
Applications & Libraries

Facilitators

John Turner

Sriram Swaminarayan

Technical Committee Report
to the Hybrid Multicore Consortium

First HMC Roadmap Workshop
January 19-22, San Francisco

BREAKOUT PARTICIPANTS

•  John Turner, ORNL
•  Sriram Swaminarayan, LANL
•  Erich Strohmaier, LBL
•  Thomas Schulthess, ETH
•  Milton Halem, UM Baltimore
•  Johnny Chang, NASA Ames
•  Hatem Ltaief, UT(ennessee)
•  Stephen Lee, LANL

•  Hemant Shukla, LBL
•  Vasily Volkov, UCB
•  Jamal Moh’d Yusof, LANL
•  Ann Johnson, Reservoir Labs
•  Kalyan Kumaran , ANL
•  Wen-Mei Hwu
•  Pieter Swart, LANL
•  Peter Messmer, Tech-X
•  Dan Hitchcock, DoE

2

CHARGE TO BREAKOUT SESSIONS

•  Goal of Roadmap:
•  Identify technologies that need to be developed to make

next generation, large-scale, accelerator-based systems
“production ready”

•  Provide community input needed to prioritize and
support activities

•  Focus is near term, while keeping an eye toward to long
term (avoid box canyons)

•  Work with the other TCs to support the overall co-design of
applications, architectures, programming, and performance
and to build ties with and provide feedback to vendors.

•  Develop strategies for early and broader access to these
accelerator-based or future hybrid multicore systems.

3

REVIEW OF GRADING CRITERIA

4

Urgency Duration Responsive Applicability Timeline

Critical
Needed as soon
as possible

Long
Applicable for
the foreseeable
future

High
Additional
funding would
enable
significant
progress

Broad
Applicable
beyond HPC

Immediate
Results within
1-2 years

Important
Needs to be done
within 3 years

Medium
Will be
applicable for
Exascale

Moderate
Additional
funding would
enable progress

HPC
Applicable to all
of HPC

Soon
Results within
2-5 years

Useful
Needed after 3
years

Near
Only applicable
for immediate
systems

Low
Additional
funding will not
help very much

Narrow
Only applicable
to Hybrid
Multicore
systems

Eventually
Results after 5
years

BREAKOUT SUMMARY

5

Topic Urgency Duration Responsive Applicability Timeline

Math & I/O
Libraries

Critical Medium Moderate Broad Immediate

Novel algorithm
research

Critical Long High Broad Soon

Intra-node Data
motion Libs

Critical Medium High HPC Immediate

profiling tools Important Long High HPC Eventually

Generic
Scientific
Toolkits

Useful Long High Broad Eventually

Architecture-
aware Compiler /
build systems

Important Long Moderate Broad Soon

Debugging Important Long Moderate HPC Soon

Fault tolerance
tools

Important Long High HPC Eventually

Libraries
•  Description

•  numerical libraries
• BLAS, LAPACK, Trilinos, FFTW,

BGL, grid operators, AMR

•  I/O libraries

•  Notes from Discussion
•  building-blocks of apps
•  scalable from desktop to HPC
•  diffusion of knowledge beyond

specific libs
•  portability critical

•  Relations to other TCs
•  Performance
•  Programming models
•  Architecture

•  Related Projects
•  MAGMA
•  cuBLAS
•  Trilinos
•  PETSc
•  Adios
•  PVFS, PLFS, GPFS,

etc.

6

Urgency Duration Responsive Applicability Timeline

Critical Medium Moderate Broad Immediate

Novel Algorithm Research
•  Description

•  Methods development
•  Algorithm is some version of

above method that we can
implement

•  Implementation is a specific
instantiation of that method

•  Notes from Discussion
•  Implementations need to be

architecture aware
•  Spatial and temporal

locality is key
•  Time to solution should be

kept in mind in addition to
complexity and flops.

•  Relations to other TCs
•  Programming models

•  Related Projects
•  CFDNS on Cell
•  FEAST-GPU

7

Urgency Duration Responsive Applicability Timeline

Critical Long High Broad Soon

ERASED: Intra-node Data Motion Libraries
•  Description

•  libs to facilitate data
motion across platforms

•  Notes from Discussion
•  analysis & performance

feedback
•  expose memory model
•  low-level access to memory

hardware

•  Relations to other TCs
•  Programming models
•  Architecture

•  Related Projects
•  OpenCL
•  Sequoia
•  Thrust
•  DaCS

8

Urgency Duration Responsive Applicability Timeline

Critical Medium High HPC Immediate

Profiling tools
• Description

•  data motion feedback
•  data location
•  Time to solution is critical
•  Energy to solution is critical

• Notes from Discussion
•  Equal ownership with

performance
•  cache hits/misses
•  retired operations
•  dual-issue
•  bus contention
•  latency
•  packet size.
•  Ops/load can be useful

•  Relations to other TCs
•  Performance
•  Architecture

•  Related Projects
•  OpenSpeedshop
•  VTUNE
•  VAMPIR
•  Oprofile
•  gprof
•  Tau

9

Urgency Duration Responsive Applicability Timeline

Important Long High HPC Eventually

Abstract Scientific Toolkits
•  Description

•  high-level expression of
math / physics

•  Physics resides in
Applications, CS resides in
Programming models

•  Notes from Discussion
•  Grid operation libraries
•  PDE libraries
•  Graph libraries
•  Success requires strong

interaction between CS and
Physics experts

•  Relations to other TCs
•  Programming models

•  Related Projects
•  SCOUT
•  libMesh
•  netCDF
•  Toolkits within matlab
•  BGL / PBGL

10

Urgency Duration Responsive Applicability Timeline

Useful Long High Broad Eventually

ERASED: Architecture-aware compilers
•  Description

•  optimizing compilers with
knowledge of underlying
architecture

•  build system / tools
•  Notes from Discussion

•  assume basic compiler
available

•  assume MPD compiler will
never exist

•  desire something in
between (e.g. directives)

•  feedback, auto-tuning

•  Relations to other TCs
•  Programming models
•  Architecture

•  Related Projects
•  PGI
•  CAPS / HMPP
•  CUDA
•  R-Stream
•  GPUSS
•  CellSs
•  Scout

11

Urgency Duration Responsive Applicability Timeline

Important Long Moderate Broad Soon

ERASED: Debugging
•  Description

•  something better than
printf (and write)

•  Notes from Discussion
•  luxury, not necessity
•  have survived with printf,

but would love better
•  thread-awareness
•  non-intrusive
•  heterogeneous
•  aware of memory

hierarchy

•  Relations to other TCs
•  Architecture
•  Programming models

•  Related Projects
•  compilers
•  PGI (pgdbg)
•  Totalview
•  gdb
•  Allinea
•  nvcc

12

Urgency Duration Responsive Applicability Timeline

Important Long Moderate HPC Soon

Resilience / Fault tolerance
•  Description

•  system reports failures so
app can continue

•  Notes from Discussion
•  must move beyond

checkpoint / restart
•  minimal impact on

resources
•  Generic interaction with

system

•  Relations to other TCs
•  Architecture
•  Programming models

•  Related Projects
•  compilers
•  Erlang
•  OpenMPI

13

Urgency Duration Responsive Applicability Timeline

Critical Long High HPC Eventually

SUPPLEMENTAL

14

Discussion with programming models
Need to develo methods that cross domains.
Algorithm development / design
 Implementation is usually tied to algorithm
Are algorithms different from libraries
Novel algorithm research that is architecture aware

What is a DSL?
 Is it just a library?
 Physics part of DSL belongs to Apps
 CS part of DSL belongs to Programming models

Memory hierarchies
 short term we need hierarchies exposed (DMAs etc)
 use transition tools when available
 transition tools get subsumed by compilers, etc.

Drop Intra node data libs
 Drop architecture aware compilers

Discussion with architectures section

What matters to applications?
 memory bandwidth

Impact of architecture changes to memory on apps

(a) syncronous behavior
 shared address space
 what is a good metric: ops/load?
 speed of light is not a limiting factor
 latency (hiding) is important

need to define a system interaction API

WE COULD deal with fault tolerance by automatic data
migration, but
 HPC specific means higher cost
 not commodity, see above
 perhaps improve checkpoint performance instead
 MPI-3 has hooks for knowing that a
node is about to go down
 system monitoring tools to let us know
when a node is due to die
 could do redundant computations to deal with this
 Automated queing system to shrink / expand jobs

Is mixed (extended) precisionimportant
 Verification is next to impossible
 tools for determining precision needed
 FPGAs are a possible fit

Ken's notes
Applications & Architecture Pairing

Input from Apps about what metrics matter?

- Apps need more BW to memorieS (ultimately comes down
to Ops/Load)

- Apps need tools to deal with memory heirarchies (abstract
& portable
would be better)
 may be vendor desire to hide some private IP - "shim"
like interfaces

- architecture features like moving memory on stack or die
will help
latency which is goods for Apps

- latency hiding would be good; with enough parallelism this
is all that
matters
 most archs don't seem to provide enough hooks for this
 - Cell/RR experience: user controlled local mem was good
but with
issues, but automated (or teaching cache) would help
 more exposure from and control of asynch behavior
 desire ability to partition cache behavior into pools

Synchronous behavior vs. asynch?

Applications in the Scientific community are written to
accomplish Science
and not to write an application.

CUDA vs OpenCL... (FOR Apps & Programming Models)
 - need portability; need/desire performance right away

Fault Tolerance greyed out by Apps!
 - what is unique about this area for HMC? (beyond
Exascale Initiative)
 - this buck has been passed around so much it is worn out
 - need for architecture to expose faults to Apps to deal with
 - are some of the Apps desired architectural features
possible?
 - fault prediction with migration (IBM example); heavy tax
(performance,
and beyond HPC)
 many types of faults may not provide sufficient time to
"protect";
some can't be predicted, but many can
 - flash on nodes for faster local checkpoints
 - "Check Engine" light is a similar issue
 - Is Redundant computation necessary? (more discussion
suggested)

memory capacity
issues arise
 - is there a need beyond just 32-bit & 64-bit

Performance and metrics
Need to evaluate architecture applicability for specific
application

What is a good metric?
 ops/W is useless to applications
 ops/load is the arithmetic intensity, but is a crude indicator
of performance expectation.
 time to solution is better
 energy to solution is better

Time to solution:
 make model of application
 map to system characteristics
 run 'what if' scenarios
 Leads to predictive modeling
 levels of accuracy / ease
 user level simple warm fuzzy
 professional level more accurate
 helps evaluate gains by chnaging to a different architecture

 A good lowerbound on expected performance gain is
important

Autotuning:
 Not always the answer
 best practices need to be captured
 optimization can result from this
 but also need to explore different algorithms and methods
 genetic algorithms can help
 need to figure out how best to distribute physics across
HMC

Integrated measurements
 How to measure performance?
 counters
 latency
 pipeline stalls
 memory hits/misses
 Must be protable, calibrated, and usable

NOTES AND RECOMMENDATIONS

•  Hardware simulators are useful before hardware is
available

•  As soon as hardware is available, we need a few prototype
nodes per site, preferably one per developer

•  Small testbeds of 10-100 nodes within a year
•  Leadership platform that is 10x more powerful than today’s

fastest supercomputers within 2-3 years

15

