C Experience

en-mei Hwu

llinois, Urbana Champaign

th contributions from

eremy Enos, Guochun Shi, Volodymyr
‘Navarro, John Stone, Jim Phillips, Chris
elado, I-Jui Song, and Sara Baghsorkhi

National Center for Supercomputing Applications
University of lllinois at Urbana-Champaign

GPU Clusters at NCSA

e Lincoln « AC
e Production system available via e Experimental system available
the standard NCSA/TeraGrid for exploring GPU computing

HPC allocation

Lincoln vs. AC: Configuration

e Lincoln (Production) AC (Experimental)

e Compute cores e Compute cores
e CPU cores: 1536 CPU cores: 128
e GPU units: 384 * GPU units: 128
 CPU/GPU ratio: 4 e CPU/GPU ratio: 1

* Memory * Memory
* Host memory: 16 GB * Host memory: 8 GB
 GPU Memory: 8 GB/host GPU Memory: 16 GB/host
e Host mem/GPU: 8 GB e Host mem/GPU: 2 GB

e J/O 1/O
* PCI-E 2.0 (x8) * PCI-E 1.0 (x16)
* GPU/host bandwndth: 4 GB/s e GPU/host bandwidth: 4 GB/s

e [B bandwidth/host: 8 Gbit/s e IB bandwidth/host: 16 Gbit/s

HPC Application Acceleration Work at UIUC

* Collaborative efforts across campus

e TACAT/NCSA, CUDA Center of Excellence, Coordinated
Science Lab, Physics, Chemistry, Mechanical, Material,
Bioengineering, ECE, CS, ...

* Broad range of applications

e Molecular dynamics, CFD, Lattice QCD/MILC, Quantum
Chemistry, Weather/Climate, Cosmology, Biomedical
Imaging, Genomics...

 New Programming Tools and Ultilities

e Performance models and tools, memory optimizations,
domain specific code generators, CPU/GPU data
comunication

NAMD: Overlapping GPU and CPU
with Communication

- —— —

Other Nodes/Processes

One Timestep

Actual Timelines from NAMD

Generated using Charm++ tool “Projections”

I .
-

NAMD on Lincoln Cluster Performance
(8 cores and 2 GPUs per node, very early results)

~5.6 ~2.8

1.6

1o 2 GPUs = 24 cores B CPU (4ppn)
§ ' ,4GPUs B CPU (2ppn)
~ 1 . -
;) / /8GPUS B GPU (4:1)
E 0.8 / / 6 GPU 0 GPU (2:1)
® 6. 6 GPUs BGPU (1:1)

0.4- | 8 GPUs =

0.2- 96 CPU cores

0_
4 8 16 32 64 128 Power:
CPU -320 W

CPU cores GPU — 520W

Courtesy of James Phillips, UIUC

Lattice QCD

Solving the quantum chromodynamics
theory of quarks and gluons in 4-D
lattice of space and time

A typical computation involves
collecting neighboring links/spinors in
4-D lattice and update the local

spinor/momentum.
W [] W 4D gauge field of 3x3
. . _ _complex vars
o v o 7 T , T o .
- :
2
L
J
..'.
9 v o‘%pinor: 4 5U3 vector \.
& . & SU3 vector: 3 complex vars

Courtesy of K. Z. Ibrahim

Time distribution for a run on 2048 XT3 (BigBen) cpus
using a 40° x 96 grid (5 x 10% x 6 per cpu) with m; = 0.1m

Activity time(s) MF/cpu | per cent
CG 2987 530 58.5
FF 1125 579 220
GF 489 469 9.5
Fat 442 627 8.7
Long 24 340 <1
Input config. 41 <1
total above 5108

unaccounted 104 1.9
wallclock 5212

CPU time in MILC program for
one typical data set

Data layout in CPU and GPU

e All the four major components (CG, FF, GF, Fat) of MILC

program are bandwidth bound
e Data layout in GPU is arranged so that we can do coalesce

read and write

evensite starts oddsite starts
CPU spinor Y { CPU links
| layout
{
6*V floats Onelink

+X links

Onespinor (—A—\

/_)_\ 6 *Vhfloats
: \ ET link

I 1

CPU parity Intermediate

spinor data format 12-construct

GPU parit .
- party , GPUlinks | J = ,
spinor | [[Y/Z/T link
¥ layout Vh *floatd float4
float2
Vh *float2
#dzfine READ_FAT MATRIZ 12 SINGLE (gauge, dir, idx) AN
floatd FATO = texiDfetch({gauge), idx + ({dicr/2)*3+0)*¥h); Y
. floatd FATL = texlDfetchi{gauge), idx + {{dir/2)*3+1)*¥h); 4
GPU kernel code ’“?iéﬁtg“?é‘nzsiiﬂﬁﬁfiiﬁﬁﬁi;‘iiﬁi§? op_ i +) § GPUkernel cod Floatd TATZ = texIDfetch((qauge), idx + ((dir/2)*]e2)+vh);
toread spinor Float) T1 - texiDfatohi (spinor), spoids « 140), ernel code giuatﬂl FAT3 - nake_float4(l, 0,0, U),: i
- oatd FATA = make_float4(0,0,0,0);

floatl I2 = texlDfetch((spinoc), sp_idx + 2+¥h); to read link

Spinor data layout Link data layout

Preliminary results

description status Results*
(Gflops)
Update spinors using the neighboring Fully implemented
CG links and spinors through Conjugate (12 and 8-reconstruct, 28'7 (DP)
Gradient process SP, DP and half 86.1 (SP)
precision, mixed
precisions) 120 (HP)
Fat Update fatlink using the neighboring links Implemented the 12- 1 56 (SP)

reconstruct, single
precision case

GF Update the momentum using the Work in process X
neighoring links

FF Update the momenum using the Not started yet X
neighboring links and spinors

* The results is obtained in a single gtx280

CPU DP
0.53 GFLOPS

New CUDA (OpenCL) CG and Sparse package/framework from UIUC.

TeraChem

200.00

I K-matrix
250.00

J-matrix

£00.00 M Linear Algebra
150.00 Kpq
I
10:0.00

m Density
LO.00 II II
" BB l M

opp N N BN BN B B B .
1 yi 4 8 16 3

Nodes (1 node =2 GPUs)

——
L)
ar
o

ot
=

o

—
L]
ar

L —

LL

(W]

o

=t
(7]

[
ar

=

—
o
oy
a
E
[=

Bovine pancreatic

trypsin inhibitor (BPTI) .. -
3.21G, 875 atoms, 4893 MPI timings and scalability

basis functions GPU (computed with SP): K-matrix, J-matrix
CPU (computed with DP): the rest

sy of Ivan Ufimtsev, Stanford

Performance in Lincoln cluster

600 - - 450
100 - P matrix assembly
mK
S 250 | diagonalization
@ mJPQ
= - W dgemm
8 100 8 300
5 uKPQ b
a =
2 S 250 -
a 200 mLA g
£ < 200 -
= /K reduction cost 2
a
200 E 150 -
uncounted >
100 -
100 -
0 - o . , , il I BN B .
2 4 8 16 32 64 128 2 4 8 16 32 64 128
of cluster nodes # of cluster nodes
(a) Execution time of CspA molecule (1732 atoms) as a (b) Linear algebra execution time breakdown CspA molecule
function of the number of GPU cluster nodes used to as a function of the number of GPU cluster nodes used

perform the calculations.

e Jand K scales well as node number increases
* Linear Algebra (LA) can only scale to 16 nodes

* Among LA, the diagonalization has the worst scalability
e CPU and communications are the bottleneck

New Programming Tools from UIUC

 ADAPT (PPoPP 2010, Baghsorkhi, et al)

 Where and how CUDA kernels spend there cycles through
source code analysis

 MCUDA (CGO 2010, Stratton, et al)
e Generating efficient CPU SSE friendly code from CUDA

e CUDA-t0-OpenCL (Nandakumar, et al)

e Automatic conversion of CUDA to OpenCL GPU code
(soon CPU code)

 Upcoming
* Gluon/Pyon, automatic memory optimization for gridded
applications, automatic conversion from scatter to gather

LBM: The best layout is neither SoA nor AoS

e Tiled Array of Structure, using lower bits in x and y
indices, i.e. X;., and y,., as lowest dimensions:
[Z11Y31.4)[X31.4]l€]1y5.01[%5,0]

e F(z,y,x e)=z* Y241 = [[X]/241 5 [E| * 24 24 4
Vapg F X241 B % 24 % 24 4 x, * [BI# 24% 244 e *24% Dby y, H 244 x,

e 6.4X faster than AoS, 1.6X faster than SoA on GTX280:

e Better utilization of data by neighboring cells

e This is a scalable layout: same layout works for very large objects.

y=0 ¥=1 ¥=O y=1__y=0 ¥=1 y=0

New Runtime Utilities from UIUC

e GMAC (ASPLOS 2010, Gelado, et al, UIUC/UPC)

e Asymmetric Distributed Shared Memory for CPU/GPU,
legacy code and I/O library support, multi GPU and peer
I/0 (with Fermi)

e CUDA memtest

e For both hard and soft memory errors

 CUDA/OpenCL wrapper

e NUMA affinity mapping, GPU device virtualization,
device rotation, memory scrubber

 GPU-aware Cluster management utilities

Blue Waters

Educational Prog

Al —, -
Mgz T)

(eXIs raduate CO , newizourses tofay

foundations fO‘r petascale C mpl}t .

Summer sch@ols, Workshopggnd seminass to-introduce
students torpportunities and challenges in petascale | 4¢
computing - E
“Best practices” for certificate programs in computatioﬁal

science and engineeriing: -

Textbook, Morgan Kaufman publisher,
January 2010 release

GPUComputing .org

 An international, virtual
community for researchers

interested in CUDA
Collaborative resources include
discussion boards and Wikis
Catalog of available research
software resources

Conclusions

 GPU acceleration producing real results

e System tools becoming GPU aware, but still some
gaps to fill

 Heterogeneous parallel programming hard, but
better HPC programming tools coming.

 GPUComputing.org will help accelerate research
progress

Wen-mei Hwu w-hwu@uiuc.edu

Thank you.

