
Programming Models

• Areas of interest to this TC
◦ Code and performance portability
◦ Developer productivity: tools and programming methodologies for "mere

mortals"
◦ Data layout and motion, multiple disjoint address spaces, SIMD length, etc.

• Relation to other TCs
◦ Applications: algorithm design and selection
◦ Architecture: feature roadmaps, co-design of hardware control and

monitoring interfaces
◦ Performance: data motion costs and analysis, system modeling

Topic Urgency Duration Responsiveness Applicability Timeline
HMC
Programming:
Best Practices
and
Knowledge
Transfer

Important Medium High Narrow Immediate

Transition
Tools Critical Medium High HPC Soon

Debugging
and
Performance
Support

Important Long High Broad Soon

HMC and non-
HMC
Performance
Portability

Important Long Moderate Broad Eventually

Expressive
Programming
Environments

Useful Long Moderate Broad Eventually

HMC Programming: Best Practices and Knowledge Transfer

Description

1. Quickly move knowledge from HMC research groups to code development groups
(faster than developing tools)

2. Provide independent assessment of programming model technologies
3. Provide guidance on matching algorithms to hardware
4. Influence future investment directions by creating HMC-aware developer

communities.

Notes from Discussion



Artifacts from these activities could include:
• Reference implementations of algorithms on particular hardware configurations
• Best practices for code and algorithm design
• White papers and books
• Benchmark suites

Relations to other TCs

Applications: collaborate on design of architecture-aware algorithms
Libraries: review and preserve best practices
Architecture: co-design of algorithms, architectures, and programming models

Related Projects

CUDA Zone
Programming Motifs
MAGMA project
Machine-specific training programs

Transition Tools

Description

1. Tools to facilitate the refactoring of existing code bases to new programming
paradigms

2. Tools for identifying acceleration opportunities

Notes from Discussion

• Language interoperability is a crucial component for incremental adoption of HMC
features in existing codes.

• Features such as compiler or preprocessor directives are probably the quickest path
to adoption

Relations to other TCs

Applications: survey of existing code bases to determine requirements and priorities for
transition tools
Performance: modeling of systems to support architecture-aware code generation and
rewrite capabilities

Related Projects

• Compiler directives
◦ OpenMP, performance-oriented pragmas



• Language extensions and APIs
◦ CUDA, OpenCL, MPI

• Language translation
◦ C-to-CUDA, C-to-FPGA
◦ Note: moving from a restricted language to a general purpose language is

much easier
• Performance analysis and modeling tool extensions

◦ ROSE, TAU

Debugging and Performance Support

Description

1. Provide capability to access debugging and performance data on HMC hardware and
runtime

2. Research correlation of data from heterogeneous hardware components
3. Bridge the semantic gap between low-level data and high-level programming

models

Notes from Discussion
An artifact from this activity might be a standardized interface between architectural
features and higher-level tools. This would provide better tool portability across multiple
architectures.

Relations to other TCs

Architecture: collaboration on two-way exchange of debugging and performance
information.
Performance: determining how to strengthen the link between programming models and
analysis tools

Related Projects

• Consumers of information
◦ NVIDIA Nexus
◦ vampir
◦ oprofile
◦ TAU
◦ TotalView
◦ Allinea DDT
◦ Charm++

• Interfaces
◦ PAPI

HMC and non-HMC Performance Portability

Description



1. Research how to provide performance portability across HMC and non-HMC (e.g.
multicore) architectures without branching a code base.

2. How to model and develop code for explicitly-managed memory hierarchies and
disjoint address spaces.

Notes from Discussion
• What are the implications of maintaining multiple code bases?

◦ V&V, feature mismatches between branches, etc.
• What breadth of application space?

Relations to other TCs

Applications: what is "acceptable" performance, and when is this capability needed?
Architecture: are there opportunities for compatibility or general-purpose feature additions
in HMC hardware that would ease portability

Related Projects

• Platform agnostic:
◦ OpenCL

• Accelerator-to-general purpose:
◦ MCUDA, CUDA-Fortran

• Autotuning

Expressive Programming Environments

Description

1. Reduce effort to utilize HMC hardware configurations
2. Capture developer's intent in a more declarative way (front-end)
3. Translate intent to HMC targets (back-end)

Notes from Discussion

Relations to other TCs

Applications: co-design of declarative programming environments

Related Projects

• Scientific computing environments
◦ MATLAB, Mathematica, Maple, etc.

• FPGA Workflow
◦ LabVIEW, C2H, MATLAB-to-FPGA

• High-level programming environments, languages, libraries
◦ Python: Copperhead, SciPy
◦ Thrust C++ CUDA library
◦ UPC, Titanium



• HPCS Languages
◦ X10, Chapel

• Domain specific languages


	Programming Models
	HMC Programming: Best Practices and Knowledge Transfer
	Description

	
	Transition Tools
	Description
	Related Projects

	Debugging and Performance Support
	Description
	Related Projects

	HMC and non-HMC Performance Portability
	Description
	Related Projects

	
	Expressive Programming Environments
	Description
	Related Projects



