
Programming Models

Facilitators

 Paul Henning (LANL)

 Sadaf Alam (CSCS)

 Jonathan Carter (LBL)

Technical Committee Report
to the Hybrid Multicore Consortium

First HMC Roadmap Workshop
January 19-22, San Francisco

BREAKOUT PARTICIPANTS

2

•  Sadaf Alam, CSCS, (alam@cscs.ch)
•  Jonathan Carter, LBL, (jtcarter@lbl.gov)
•  Alan Coppola, OptNgn, (ajjc@optngn.com)
•  Richard Graham, ORNL, (rlgraham@ornl.gov)
•  Paul Henning, LANL (phenning@lanl.gov)

•  Wen-mei Hwu, UIUC (hwu@crhc.uiuc.edu)
•  John Levesque, ORNL, (levesque@ornl.gov)
•  Al McPherson, LANL (mcpherson@lanl.gov)
•  Piyush Mehrota, NASA Ames (piyush.mehrota@nasa.gov)
•  Dave Norton, PGI, (dave.norton@pgroup.com)
•  Philip Roth, ORNL, (rothpc@ornl.gov)
•  Sonia Sachs (soniasachs@gmail.com)
•  John Shalf, LBL, (jshalf@lbl.gov)

•  Aniruddha Shet, ORNL, (shetag@ornl.gov)
•  John Thorp, LANL (thorp@lanl.gov)
•  Kathy Yelick, LBL, (yelick@eecs.berkeley.edu)
•  Shujia Zhou, NASA, (shujia.zhou@nasa.gov)

CHARGE TO BREAKOUT SESSIONS

•  Goal of Roadmap:
•  Identify technologies that need to be developed to make

next generation, large-scale, accelerator-based systems
“production ready”

•  Provide community input needed to prioritize and
support activities

•  Focus is near term, while keeping an eye toward to long
term (avoid box canyons)

•  Work with the other TCs to support the overall co-design of
applications, architectures, programming, and performance
and to build ties with and provide feedback to vendors.

•  Develop strategies for early and broader access to these
accelerator-based or future hybrid multicore systems.

3

CHARGE TO PROGRAMMING
MODELS

•  Identify and report on programming models for developing
applications on large-scale (accelerator-based) hybrid
computer systems in the near term and in the future.

•  Identify the types and degrees of parallelism provided by
hybrid cores and to define key architectural metrics of this
class of hybrid machine.

4

SUMMARY OF PROGRAMMING
MODELS TC

•  Areas of interest:
•  Code and performance portability
•  Developer productivity: tools, programming for “mere

mortals”
•  Data layout & motion, multiple disjoint address spaces,

SIMD length, etc.
•  Relation to other TCs

•  Relation to applications: algorithm design/selection
•  Relation to architectures: design roadmaps
•  Relation to performance: data motion costs, system

modeling

5

REVIEW OF GRADING CRITERIA

6

Urgency Duration Responsive Applicability Timeline

Critical
Needed as soon
as possible

Long
Applicable for
the foreseeable
future

High
Additional
funding would
enable
significant
progress

Broad
Applicable
beyond HPC

Immediate
Results within
1-2 years

Important
Needs to be done
within 3 years

Medium
Will be
applicable for
Exascale

Moderate
Additional
funding would
enable progress

HPC
Applicable to all
of HPC

Soon
Results within
2-5 years

Useful
Needed after 3
years

Near
Only applicable
for immediate
systems

Low
Additional
funding will not
help very much

Narrow
Only applicable
to Hybrid
Multicore
systems

Eventually
Results after 5
years

HMC Programming: Best Practices and Knowledge
Transfer
•  Description

•  Provide independent
assessment of technologies.

•  Match algorithms to hardware.
•  Influence future investments

•  Notes from Discussion
•  Reference implementations
•  Best practices
•  White papers & books
•  Benchmark suites
•  Illustrate range of available

technology options

•  Relations to other TCs
•  Applications: collaborate

on design of architecture-
aware algorithms

•  Libraries: preserve best
practices, but algorithms
should be revisited!

•  Architecture: co-design
•  Related Projects

•  CUDA Zone, motifs,
MAGMA project

7

Urgency Duration Responsive Applicability Timeline

Important Medium High Narrow (a
plus!)

Immediate

Transition Tools
•  Description

•  Tools to facilitate
refactoring existing code
bases to new programming
paradigms.

•  Tools for identifying
acceleration opportunities.

•  Choosing the right
hardware for the
application.

•  Notes from Discussion
•  Language interoperability

is crucial

•  Relations to other TCs
•  Applications: requirements
•  Performance: modeling of

systems
•  Related Projects

•  Compiler directives (e.g.
OpenMP)

•  Language translation (e.g.
C-to-CUDA, C-to-FPGA)

•  Performance analysis &
modeling tool extensions
(e.g. ROSE, TAU)

8

Urgency Duration Responsive Applicability Timeline

Critical Medium High HPC Soon

Debugging and Performance Support
•  Description

•  Capability to access debugging
and performance data on HMC
hardware and runtime

•  Correlating data from
heterogeneous hardware
components

•  Bridging the semantic gap
between low-level data and
high-level programming models

•  Notes from Discussion
•  Goal: Uniform interface

between tools and architectural
features for portability

•  Relations to other TCs
•  Architecture: collaboration

on two-way exchange of
information on debugging
and performance

•  Performance: analysis
tools

•  Related Projects
•  Consumers: NVIDIA

Nexus, vampir, oprofile,
TAU, TotalView, Allinea
DDT, Charm++

•  PAPI

9

Urgency Duration Responsive Applicability Timeline

Important Long High Broad Soon

HMC and Non-HMC Performance Portability
•  Description

•  Single code base for
performance on multiple
architectures.

•  Addressing explicitly-
managed memory hierarchies

•  Notes from Discussion
•  What are the implications of

maintaining multiple code
bases (V&V, feature creep,
etc)

•  What breadth of application
space?

•  Relations to other TCs
•  Applications: what is

“acceptable” performance,
when needed?

•  Architecture: compatibility
or general-purpose feature
additions

•  Related Projects
•  MCUDA, OpenCL, CUDA-

Fortran
•  Autotuning

10

Urgency Duration Responsive Applicability Timeline

Important Long Moderate Broad Eventually

Expressive Programming Environments
•  Description

•  Reduce effort to utilize
accelerator hardware

•  Capture developer’s intent
in a more declarative way,
develop back-ends for
HMC

•  Notes from Discussion

•  Relations to other TCs
•  Applications: co-design of

declarative programming
environments

•  Related Projects
•  Thrust
•  MATLAB
•  Python (Copperhead, SciPy)
•  Domain specific languages
•  HPCS Languages
•  FPGA Workflow (LabVIEW,

C2H, MATLAB-to-FPGA)

11

Urgency Duration Responsive Applicability Timeline

Useful Long Moderate Broad Eventually

BREAKOUT SUMMARY

12

Topic Urgency Duration Responsive Applicability Timeline

HMC
Programming:
Best
Practices…

Important Medium High Narrow Immediate

Transition
Tools

Critical Medium High HPC Soon

Debugging
and
Performance
Support

Important Long High Broad Soon

HMC & non-
HMC
Performance
Portability

Important Long Moderate Broad Eventually

Expressive
Programming
Environments

Useful Long Moderate Broad Eventually

NOTES AND RECOMMENDATIONS

•  Testbeds: a large variety of small systems to test cross-
platform applicability

•  Clusters: useful to evaluate programming models (e.g.
PGAS), but only up to a point

•  Stability of development and execution environments
•  Cross-cutting collaboration is critical

13

