
Presented by

George Bosilca

Dealing with the Scale Problem
Scalable and Fault-Tolerant Topologies for Large

Scale Parallel Applications

Innovative Computing Laboratory
University of Tennessee

Binomial graph
Undirected graph G:=(V, E), |V|=n (any size)
Node i={0,1,2,…,n-1} has links to a set of nodes U
U={i±1, i±2,…, i±2k | 2k n} in a circular space
U={ (i+1)mod n, (i+2)mod n,…, (i+2k)mod n | 2k n } and

{ (n+i-1)mod n, (n+i-2)mod n,…, (n+i-2k)mod n | 2k n }

Merging all links
creates binomial

2

Run-time scalability

graph from each
node of the graph

Broadcast from
any node in
Log2(n) steps

Binomial graph properties

Degree = number of neighbors
= number of connections
= resource consumption

3

Node-connectivity (κ)
Link-connectivity (λ)
Optimally connected
κ = λ =δmin

Diameter ⎡ ⎤)(
2

)(log2

⎥⎥
⎤

⎢⎢
⎡ n

O Average distance
3

)(log2 n≈

Run-time scalability

Routing cost

• Because of the counterclockwise
links the routing problem is
NP-complete

• Good approximations exist, with a
maximum overhead of 1 hop

4

• Broadcast: Optimal in number of steps
log2(n) (binomial tree from each node)

• Allgather: Bruck algorithm log2(n)
steps

− At step s:
• Node i sends data to node i-2s
• Node i receives data from node i+2s

Run-time scalability

Dynamic environments

number of nodes

number of
added nodes

number of new
connections

5

Self-Healing BMG

number of nodes

Run-time scalability

Dealing with the Scale Problem

Optimized MPI Collective
Communications

Optimization process
• Run-time selection process

– We use performance models, graphical encoding, and
statistical learning techniques to build platform-specific,
efficient, and fast run-time decision functions

7

Collective communications

Model prediction

(A) (B)

8

Collective communications

(C) (D)

Model prediction

(A) (B)

9

Collective communications

(C) (D)

Tuning broadcast
Broadcast, 128 B, MPICH 2 Broadcast, 10 MB, MPICH 2

Broadcast, 128 B, Open MPI Broadcast, 10 MB, Open MPI

0

20

40

60

-20

-40

P
er

fo
rm

an
ce

 im
p

ro
ve

m
en

t [
%

]

60]

10

Collective communications

0

20

40

60

-20

-40

P
er

fo
rm

an
ce

 im
p

ro
ve

m
en

t [
%

]

Communicator size
40 600 20

Communicator size
40 60200

Application tuning

• Parallel Ocean Program (POP) on a Cray XT4
– Dominated by MPI_Allreduce of 3 doubles

• Default Open MPI select recursive doubling
– Similar with Cray MPI (based on MPICH)

– Cray MPI has better latency

– i.e., POP using Open MPI is 10% slower on 256 processors

11

Collective communications

• Profile the system for this specific collective and
determine that “reduce + bcast” is faster
– Replace the decision function

– New POP performance is about 5% faster than Cray MPI

Fault Tolerance
Diskless Checkpointing

Dealing with the Scale Problem

Diskless checkpointing

P1 P2 P3 P4 Four available processors

Add a fifth and perform
a checkpoint(Allreduce)P1 P2 P3 Pc+ P4+ + =

Ready to continueP1 P2 P3 PcP4

....
FailureP1 P2 P3 P4 PcP4

S
te

ps

13

Fault tolerance

FailureP1 P2 P3 P4 PcP4

Ready for recoveryP1 P3 PcP4

Recover the processor/dataP1 P3 P4Pc P2- - - =

Diskless checkpointing
• How to checkpoint

– Either floating-point arithmetic or binary arithmetic
will work

– If checkpoints are performed in floating-point
arithmetic, then we can exploit the linearity of the
mathematical relations on the object to maintain
the checksums

14

Fault tolerance

• How to support multiple failures
– Reed-Salomon algorithm

– Support p failures require p additional processors
(resources)

PCG
• Fault-tolerant CG

• 64×2 AMD 64 connected using GigE

Performance of PCG with different MPI libraries

15

Performance of PCG with different MPI libraries

For checkpoint
we generate one
checkpoint every
2000 iterations

Fault tolerance

PCG

Checkpoint
overhead in
seconds

PCG Checkpoint Overhead PCG Recovery Overhead

16

Fault tolerance

Dealing with the Scale Problem

Automatic Fault Tolerance
Using Message Logging

Detailing event types to avoid
intrusiveness

18

Fault tolerance

Interposition in Open MPI

• We want to avoid tainting the base
code with #ifdef FT_BLALA

• Vampire PML loads a new class of
MCA components
– Vprotocols provide the entire FT

protocol (only pessimistic for now)

– You can use the ability to define

19

– You can use the ability to define
subframeworks in your components

• Keep using the optimized low level
and zero-copy devices (BTL) for
communication

• Unchanged message scheduling logic

Fault tolerance

Performance overhead

Table 1. Percentage of non-deterministic events to total number of exchanged messages
on the NAS Parallel Benchmarks (Giga Ethernet, class B)

ni
lla

 M
P

I
et

te
r)

20

Myrinet 2G (mx 1.1.5)—Opteron 146x2—2GB RAM—Linux
2.6.18 —gcc/gfortran 4.1.2—NPB3.2— NetPIPEFault tolerance

%
 p

er
fo

rm
an

ce
 o

f v
an

il
(h

ig
he

r
is

 b
et

t

Contact

George Bosilca
bosilca@eecs.utk.edu

2121

