
Presented by

George Bosilca

Dealing with the Scale Problem
Scalable and Fault-Tolerant Topologies for Large 

Scale Parallel Applications

Innovative Computing Laboratory
University of Tennessee



Binomial graph
Undirected graph G:=(V, E), |V|=n (any size)
Node i={0,1,2,…,n-1} has links to a set of nodes U
U={i±1, i±2,…, i±2k | 2k  n} in a circular space
U={ (i+1)mod n, (i+2)mod n,…, (i+2k)mod n | 2k  n } and 

{ (n+i-1)mod n, (n+i-2)mod n,…, (n+i-2k)mod n | 2k  n }

Merging all links 
creates binomial 
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Run-time scalability

graph from each 
node of the graph

Broadcast from 
any node in 
Log2(n) steps



Binomial graph properties

Degree = number of neighbors
= number of connections
= resource consumption
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Node-connectivity (κ)
Link-connectivity (λ)
Optimally connected
κ = λ =δmin
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Run-time scalability



Routing cost

• Because of the counterclockwise 
links the routing problem is 
NP-complete

• Good approximations exist, with a 
maximum overhead of 1 hop
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• Broadcast: Optimal in number of steps 
log2(n) (binomial tree from each node)

• Allgather: Bruck algorithm log2(n) 
steps

− At step s:
• Node i sends data to node i-2s
• Node i receives data from node i+2s

Run-time scalability



Dynamic environments

number of nodes

number of 
added nodes

number of new
connections

5

Self-Healing BMG

number of nodes

Run-time scalability



Dealing with the Scale Problem

Optimized MPI Collective 
Communications



Optimization process
• Run-time selection process

– We use performance models, graphical encoding, and 
statistical learning techniques to build platform-specific, 
efficient, and fast run-time decision functions
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Collective communications



Model prediction

(A) (B)
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Collective communications

(C) (D)



Model prediction

(A) (B)
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Collective communications

(C) (D)



Tuning broadcast
Broadcast, 128 B, MPICH 2 Broadcast, 10 MB, MPICH 2

Broadcast, 128 B, Open MPI Broadcast, 10 MB, Open MPI
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Collective communications
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Application tuning

• Parallel Ocean Program (POP) on a Cray XT4
– Dominated by MPI_Allreduce of 3 doubles

• Default Open MPI select recursive doubling
– Similar with Cray MPI (based on MPICH)

– Cray MPI has better latency

– i.e., POP using Open MPI is 10% slower on 256 processors
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Collective communications

• Profile the system for this specific collective and 
determine that “reduce + bcast” is faster
– Replace the decision function

– New POP performance is about 5% faster than Cray MPI



Fault Tolerance
Diskless Checkpointing

Dealing with the Scale Problem



Diskless checkpointing

P1 P2 P3 P4 Four available processors

Add a fifth and perform
a checkpoint(Allreduce)P1 P2 P3 Pc+ P4+ + =

Ready to continueP1 P2 P3 PcP4

....
FailureP1 P2 P3 P4 PcP4

S
te

ps
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Fault tolerance

FailureP1 P2 P3 P4 PcP4

Ready for recoveryP1 P3 PcP4

Recover the processor/dataP1 P3 P4Pc P2- - - =



Diskless checkpointing
• How to checkpoint

– Either floating-point arithmetic or binary arithmetic 
will work

– If checkpoints are performed in floating-point 
arithmetic, then we can exploit the linearity of the 
mathematical relations on the object to maintain 
the checksums
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Fault tolerance

• How to support multiple failures
– Reed-Salomon algorithm

– Support p failures require p additional processors 
(resources)



PCG
• Fault-tolerant CG

• 64×2 AMD 64 connected using GigE

Performance of PCG with different MPI libraries
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Performance of PCG with different MPI libraries

For checkpoint 
we generate one 
checkpoint every 
2000 iterations

Fault tolerance



PCG

Checkpoint 
overhead in 
seconds

PCG Checkpoint Overhead PCG Recovery Overhead
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Fault tolerance



Dealing with the Scale Problem

Automatic Fault Tolerance
Using Message Logging



Detailing event types to avoid 
intrusiveness
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Fault tolerance



Interposition in Open MPI

• We want to avoid tainting the base 
code with #ifdef FT_BLALA

• Vampire PML loads a new class of 
MCA components
– Vprotocols provide the entire FT  

protocol (only pessimistic for now)

– You can use the ability to define 
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– You can use the ability to define 
subframeworks in your components

• Keep using the optimized low level 
and zero-copy devices (BTL) for 
communication

• Unchanged message scheduling logic

Fault tolerance



Performance overhead

Table 1. Percentage of non-deterministic events to total number of exchanged messages 
on the NAS Parallel Benchmarks (Giga Ethernet, class B)  
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Myrinet 2G (mx 1.1.5)—Opteron 146x2—2GB RAM—Linux 
2.6.18 —gcc/gfortran 4.1.2—NPB3.2— NetPIPEFault tolerance
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