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“Given a lump of nuclear material, what are its
properties, and how does it interact?”

How do we describe nuclei we cannot

measure? Supernova
Robu_st, predictive nuclear theory exists for structure and ‘ i

reactions

Nuclear data needed to constrain theory

Goal is the Hamiltonian and nuclear properties
— Bare intra-nucleon Hamiltonian
— Energy density functional

Mission relevant to NP, NNSA

Half of all elements heavier than iron produced in r-process
where limited (or no) experimental information exits

Nuclear reaction information relevant to NNSA and AFCI 000 - o
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Pushing the nuclear boundaries

Thermal properties regions
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All regions: Nuclear cross-section efforts
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Nuclear DFT effort

The Leadership Computing
Facility effort will

» Enlarge ab-initio square to
mass 100

 Enable initial global DFT
calculations with restored
symmetries

\
R ..m1|° - ""4('}0 Nuclear coupled cluster effort /




Nuclear interactions: Cornerstone of the
entire theoretical edifice

Depends on spin, angular momentum, and nucleon
(proton and neutron) quantum numbers. Complicated interactions

/

® /" ® H = Z V2+ZV(r,,])+VNNN
’ —lA 1<]j T

Solved up to mass 12 Real three-body interactions

with Green’s Function I_II . ‘ derived from OCD-based
Monte Carlo and the \P> — E \P> ) Q . /

effective theories
No-Core Shell Model.
We want to go much l
further!

Method of solution:
Nuclear coupled-cluster theory
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Coupled-cluster theory: Ab initio in
medium mass nuclei

| W) = exp(T)| D)

B ncton Coporator. | et SRS
T=T4+T T34 Energy
BoS 1,2 E =(®|exp(-T)H exp(T)|®)
= . Amplitude equations
CET (op leetmH e jo) - (0f [Hle) <0

* It boils down to a set of coupled, nonlinear algebraic equations (odd-shaped tensor-tensor multiply)
» Storage of both amplitudes and interactions is an issue as problems scale up

e Largest problem so far: 4°Ca with 10 million unknowns, 7 peta-ops to solve once
(up to 10 runs per publishable result)

» Breakthrough science: Inclusion of 3-body force into CC formalism (6-D tensor)
weakly bound and unbound nuclei
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Ab initio in medium mass nuclei
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Inclusion of full TNF in CCSD: F-Y comparisons in 4He

Solution at CCSD and CCSD(T) levels
o= g~ + g * g5 involves roughly 67 more diagrams...
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28 . . S Challenge: Do we really need
the full 3-body force, or just its
3 4 5 6 :
N density-dependent terms?

Hagen, Papenbrock, Dean, Schwenk, Nogga,
WiIloch, Piecuch, Phys. Rev. C 76, 034302 (2007)
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Coupling of nuclear structure and reaction
theory (microscopic treatment of open channels)
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Closed QS

Capturing states Decaying states

Neutron number
Introduction of continuum basis states (Gamow, Berggren)
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Ab initio weakly bound and unbound nuclei

Single-particle basis includes

bound, resonant, non-resonant
continuum, and scattering states
ENORMOUS SPACES....almost 1K orbitals.
10%2 many-body basis states in °He

*He ‘He *He *He "He *He *He "He 100

G-HF basis
m— = HO-HF basis
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» ; structure of
= 102 drip-line nuclei

[feature article in Physics Today (November 2007)]

Challenge: Include 3-body forc
r [fm]
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New development: Spherical CCSD code

e Exploits spherical symmetry for closed-shell
nuclel

e Enormous reduction of computational cycles

e Enables treatment of unprecedented large
model spaces

e First test of chiral nucleon-nucleon
Interactions in medium-mass nuclel
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CCSD for nuclei with a chiral nucleon-nucleon force
[N3LO by Entem and Machleidt, L=500MeV]
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Hagen, Papenbrock, Dean, Hjorth-Jensen, Phys. Rev. Lett. 101, 092502 (2008).
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CCSD results for 48Ca from a N3LO
interaction (NN only)
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> 108° many-body configurations

Densities and radii exhibit stronger model-space dependence than energies

Hagen, Papenbrock, Dean, Hjorth-Jensen, Phys. Rev. Lett. 101, 092502 (2008).
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Summary: CCSD results with a
chiral N3LO (NN only)

Nucleus|| £/A| V/AIAE/A| R|Rexp
THe |[-5.99]-22.75] 1.08[1.86] 1.64
5o |[-6.72]-30.69| 1.25]2.71] 2.74
OCa |[-7.72]-36.40 0.84[3.24| 3.48
BCa ||-7.40|-37.97[ 1.27(3.22| 3.47
BNi |-6.02]-36.04| 1.21(3.50

Main results

1. Well-converged CCSD results with respect to size of model space (< 1% change
in binding energy when going from 14 to 15 oscillator shells)

2. Three-nucleon force and triple corrections expected to yield ~1MeV additional
binding?

3. Mirror nuclei #Ca and exotic “8Ni differ by 1.38 MeV / A - close to mass-table
predictions

4. Radii and densities exhibit stronger model-space dependence than energies
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Solution of coupled-cluster equation

Basic numerical operation:

tew(@b, i) = 2.V (Kl cd)t,q(cd, ity (ab, ki)

k.I=1,n
c,d=n+1,N

System of non-linear coupled algebraic
equations — solve by iteration

n = number of neutrons and protons

e N = number of basis states ° Many SUCh terms EXiSt

* Solution tensor memory e Cast into a matrix-matrix
— (N-n)"2"n"2 - =

e Interaction tensor memory multlplY_algo"thm
- N"4  Parallel issue:

e Operations count scaling BlOCk sizes Of V and t

— O(nN"2'N"4)
— O(n™4'N™4) with 3-body
— O(n™3'N"5) at CCSDT
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Code parallelism

Memory distribution across processors

\ d a
t,(ab, i) = 2V (kl,cd)t; £

/ ki <&
cd >&

Partial sum
L2 reside on each processor

V(ab,cl,dl) N V(ab,cl,d2) B V(ab,c2,dl) § V(a,b,c2,d2)

12 partial sum B 2 partial sum § 2 partial sum | 2 partial sum
= e |

.=‘ . > =558 Sl
e

| e (i t2, dii trlbute

V(ab, c1,dl) V(ab, cl, d2) V(ab, c2, dl) V(ab, c2, d2)
t2 partial sum 12 partial sum 2 partial sum 12 partial sum
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Future direction

e Current m-scheme algorithm scales to 1K processors
with about 20% efficiency. Attacking problems in mass
40 region is doable with current code

e Develop algorithm that spreads both the 2-body matrix
elements and the CC amplitudes within spherical CCSD
-> enables nuclei in the mass 100 region and should
scale to 10K processors (under way)

e Designing further parallel algorithms that calculate
nuclear properties to calculate densities and
electromagnetic transition amplitudes

e Eventual time-dependent CC for fission dynamics
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