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The Earth climate system

The Grand Challenge
problem

Modeling
the

climate system

To predict future 
climates based on 
scenarios of 
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Includes the 
atmosphere, land,
oceans, ice, and biosphere

scenarios of 
anthropogenic 
emissions and 
changes resulting 
from options in 
energy policy



Climate change (Warren Washington)

CCSM Climate Change Working Group: Critical science development 
and applications in support of climate-informed decision making 

• DOE CCSP SAP2.1A “Low Emissions 
Scenarios”

• Coupled ice sheet runs
• Near-term high-resolution climate prediction
• Climate change 2100 and beyond
• Prognostic carbon aerosol experiments
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Prognostic carbon aerosol experiments



Ice sheet model (William Lipscomb)

• GLIMMER has been added to CCSM, with wrapper code for exchanging fields between GLC and the coupler

• The Community Land Model (CLM) has been modified to compute the ice sheet surface mass balance in glaciated 
columns and pass the mass balance to GLC via the coupler

• CLM allows multiple vertical columns for each land unit in each grid cell. Work is under way 
to compute the mass balance for ~10 elevation classes (i.e., columns) in each glacier land unit

We will soon begin coupled climate experiments with a dynamic Greenland ice sheet. The 
model will be tuned as needed to produce a realistic control ice sheet and then applied to 
standard IPCC forcing scenarios. The model also will be used for paleoclimate studies of 
the Eemian interglacial (~125 ka), when the GIS was smaller and sea level was several 
meters higher. We will do climate change experiments with the Antarctic and Laurentide ice 
sheets when a more realistic ice sheet model is available

Greenland topography in 
GLIMMER

The rate of 21st century ice sheet melting and sea level rise is extremely uncertain and is now 
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Effect of a 6 m 
sea level rise on 
the southeast 
United States 
(Weiss and 
Overpeck, 
University of 
Arizona)

Reconstructed GIS from the last interglacial 
(Cuffey and Marshall, 2000), when sea level was 

about 6 m higher than today

• The rate of 21st century ice sheet melting and sea level rise is extremely uncertain and is now 
recognized as a high priority for climate models

• We have coupled the GLIMMER model to CCSM and will soon begin climate experiments with 
a dynamic Greenland ice sheet

• We will devote substantial resources 
(2–3 FTEs) to improving the ice sheet model 
during the next several years

• We aim to make a useful contribution to 
IPCC AR5 (~2013), but time is limited
Models must be frozen by 2009 or 2010
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Indirect effect
Steve Ghan (PNNL)

First indirect effect anthropogenic sulfur

CAM

CAM constant droplet
sedimentation
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CCSM4 model development
(Peter Gent)

Development of the fourth version of the CCSM; one of the biggest 
improvements is the simulation of ENSO
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Use of the CCSM to produce short-term climate forecasts to 2030; higher 
atmosphere resolution (0.5o) produces better rainfall in southeastern United States

Note improved southeastern United States rainfall



CAM3: Tropospheric
and stratospheric 
chemistry
J. F. Lamarque (NCAR)

• Vertical distribution of 
the zonal–mean ozone 
change (1979–2005)

• Color contours are 
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Jean-François Lamarque, D. E. Kinnison, P. G. Hess, and F. M. Vitt, “Simulated lower stratospheric trends 
between 1970 and 2005: Identifying the role of climate and composition changes,” JGR, 113, (2008)

Color contours are 
for the model results 
(average of 2 simulations) 
and line contours are 
from TOMS/SBUV



Toward an Earth System Model: 
Ocean biogeochemistry feeding 
atmospheric chemistry
P. Cameron-Smith, C. Chuang, D. Bergmann (LLNL), S. Elliott (LANL)
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The figure shows ammonia (NH3) in the marine boundary layer (picomoles) 
on the right, and its dissolved form, ammonium (NH+

4, in the ocean mixed-
layer in micromoles on the left

+



Carbon-Land Model intercomparison
(Forrest Hoffman)
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Correcting transport errors during 
numerical transport of correlated 
moment sequences
R. McGraw, BNL/SUNY-SB Science Application Partnership: 
“Statistical approaches to aerosol dynamics for climate simulation” 

PROBLEM: Nonlinear transport algorithms, designed 
to reduce numerical diffusion over coarse model 
grids, can destroy consistency within a sequence of 
aerosol size/composition moments transported as 
independent “chemical” tracers
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Until now this has been the most serious impediment 
to the widespread use of moment methods for aerosol 
simulation in climate models

SOLUTION: We present a new approach based on 
non-negative least squares that finally eliminates this 
consistency problem—with the added bonus of 
providing a much more accurate scheme for source 
apportionment and transport of aerosol mixtures. 
It should work with any transport scheme IPCC model resolutions

1990–2007



CAM scalable dycore
integration and evaluation 
M. Taylor (Sandia)

• Cubed-sphere dycores in CAM 
(with J. Edwards IBM/NCAR)

– Motivation: more scalable dycores
– Using NCAR’s HOMME with Spectral Elements
– Process split model with full dynamics 

subcycling
– Next steps: evaluation of AMIP results

New and notable

Snapshot 
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• New and notable
– Developed conservative formulation of spectral 

elements based on compatibility. First dycore in 
CAM to locally conserve both mass and energy

– Developed efficient hyper-viscosity to replace 
element based filtering. The filter was causing 
bad grid imprinting in moisture and other fields

– Scaled to 80K processors on BG/L
– Correctly simulated multiscale dynamic 

turbulence transition 
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Earth System Grid—International 
distribution of simulation results
• International central site: Earth System Grid 

– Sponsored by DOE SciDAC project. Integrates major centers for 
supercomputing and analysis coordinated internationally through PCMDI

– IPCC AR4: 12 experiments, 24 models, 17 climate centers, 13 nations
– C-LAMP experiments

• Archive status and activity
– 6000 registered users
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– Downloaded: 250 terabytes 
in 2007

– Current contents: 100,000 
simulated years of data

– Data sets: 1M files, 
180 terabytes

– New portals: ORNL, NCAR

• Access point: 
https://www.earthsystemgrid.org/

ESG usage worldwide



Contact

John B. Drake
Group Leader, 
Computational Earth 
Sciences Group
Computer Science and 
Mathematics Division
(865) 574-8670
drakejb@ornl.gov

Schedule 
of Key 
Simulations
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