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Revolutionary approach to large-

scale parallel programming

Million-way concurrency (and more) will be required
on coming HPC systems

The current “Fortran+MPI1+OpenMP” model will
not scale

Candidate languages

— Chapel (Cray)
— Fortress (Sun)
— X10 (IBM)

HPESE

\/’V Sun

New languages from the DARPA HPCS program point the
way toward the next-generation programming environment

Emphasis on performance and productivity

CCRRANY

e Not SPMD
— Lightweight “threads,” LOTS of Bas‘f °”’°'“l:"‘i_°rk";“th
— Argonne Nationa
th.em . Laboratory é
— Different approaches to locality — Lawrence Berkeley National Argonne
awareness/management Laboratory /e .
. . — Rice University "/'_"\"| o
e High-level (sequential) language — DARPA HPCS program
constructs
— Rich array data types (part of the base languages)

— Strongly typed object oriented base design
Extensible language model

Generic programming
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Concurrency: The next generation HpeS
e Single initial thread of control
— Parallelism through language constructs

e True global view of memory, one-sided
access model

e Support task and data parallelism
e “Threads” grouped by “memory locality”
e Extensible, rich distributed array capability

e Advanced concurrency constructs
— Parallel loops
— Generator-based looping and distributions
— Local and remote futures
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What about productivity? HpeS

e Index sets/regions for arrays
— “Array language” (Chapel, X10)

o Safe(r) and more powerful language constructs
— Atomic sections vs. locks

— Sync variables and futures
— Clocks (X10)

e Type inference

e Leverage advanced IDE capabilities

e Units and dimensions (Fortress)

e Component management, testing, contracts (Fortress)

e Math/science-based presentation (Fortress)
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Dynamic concurrency in MADNESS

Pseudo Chapel Code

0 refine (node) {
1 child = node.get children() ;
if (normf (node) < threshold) {
2 // local heuristic to match physical
3 // parallelism
if ( n+l < log2 (maxThreads) ) then
A // asynchronous node update
on child.locale do begin sumC[child]= ..
else
S // serial node update
sumC [child] = ..;
6 }
else {

) : ) ) // local heuristic to match physical
— Adaptive mesh in 1-6+ dimensions,  ;; parallelism

very dynamic refinement if ( n+l < log2(maxThreads) ) then

. . // asynchronous data-driven refinement
_ Spatlal decomposmon by subtrees on child.locale do begin refine(child) ;

] . . else
— Distributed container enables // serial refinement
nonprocess-centric computing refine (child) ;
}}

— Compact parallel code using task-
parallelism and locality control
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Fusion simulation: AORSA using Chapel

global view L2

Vip=f

Vip=f

a

local view

- Multiple spatial regions:
Languages provide well-defined

views

- Language and programming-
model interoperability needed to
Interact with existing libraries

- Language constructs such as
locales, regions, and places
provide natural mapping to local

view process abstraction—needed

to access existing libraries
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FourierSpace : main(2) distributed
( Block ) = [1,/nnodex, 1..nnodey];

var fgrid, m [FourierSpace] real;

var PlasmaSpace:
sparse subdomain (FourierSpace) =
[i in FourierSpace] if mask(i) == 1 then i;

var pgrid : [PlasmaSpace] real;

var ierr = HPL_pzgesv (desc_a, PlasmaSpace




Parallel mesh sweeping in Chapel

!

var setT = new FinieElementPartiion (“mesh.dat”) ;
const setTCardinality: int = setT.GetCardinality();
enum{blue, green, red);
forall sweepDir in sweepDirections({
var waveFrontMask = newVector (int, 0..setTCardinality, blue) ;
waveFrontMask (0) = green
while (waveFrontMask.find (blue) {
forall fE in setT.getMembers () {
if (waveFrontMask (fE.getId() == blue)){
var setColor:bool = true
forall edge in fE.getEdges() {
const normal = fE..getEdgeNormal (edge)
if (normal * sweepDir < 0.0){
const neMemberId: int = setT.getNeigborMemberId (fE, edge) ;

if (waveFrontMask (neMemberId) != green){setColor = false;}
}
if (setColor == true){waveFrontMask (fE.getId()) = red;}
}
}
}
forall i in waveFrontMask { if (i != blue) { i = green;}}

Class Vector{ // Generic template class
def getType() type { return T;}
def getSize() {return rng.high - rng.low + 1;}
def getRange() {return rng;}
def getDomain() {return dom;}
def resize(n: range = 1..0){rng = n; dom = [rngl;}
def clear(){this.resize();}
def find(val: T): bool {
return linearSearch(data,val(l);}
def these() var {for i in dom {yield data(i);}}
// Members
type T;
var rng : range (int);
var value: T;
var dom domain(l) distributed(Block) = [rng];
var data: [dom] T = value;

(0):V¢
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Tradeoffs in HPLS language design Hpes

e Emphasis on parallel safety (X10) vs. expressivity
(Chapel, Fortress)

— Locality control and awareness
— X10: Explicit placement and access
— Chapel: User-controlled placement, transparent access

— Fortress: Placement “guidance” only, local/remote access blurry
(data may move!ll)

— What about mental performance models?

e Programming language representation
— Fortress: Allows mathlike representation
— Chapel, X10: Traditional programming language front end
— How much do developers gain from mathematical representation?

e Productivity/performance tradeoff
— Different users have different “sweet spots”
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Remaining challenges UPES
e (Parallel) I/O model

e |Interoperability with (existing) languages and
programming models

e Better (preferably portable) performance
models and scalable memory models

— Especially for machines with 1M+ processors

e Other considerations:
— Viable gradual adoption strategy
— Building a complete development ecosystem
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