High-Productivity Language Systems:
Next-Generation Petascale Programming

Presented by

Sadaf R. Alam
Richard F. Barrett
David E. Bernholdt

Valmor F. de Almeida
Wael R. Elwasif
Robert J. Harrison
Jeffery A. Kuehn
Stephen W. Poole
Aniruddha G. Shet

Oak Ridge National Laboratory

Managed by UT-Battelle
for the Department of Energy

Revolutionary approach to large-

scale parallel programming

Million-way concurrency (and more) will be required
on coming HPC systems

The current “Fortran+MPI1+OpenMP” model will
not scale

Candidate languages

— Chapel (Cray)
— Fortress (Sun)
— X10 (IBM)

HPESE

\/’V Sun

New languages from the DARPA HPCS program point the
way toward the next-generation programming environment

Emphasis on performance and productivity

CCRRANY

e Not SPMD
— Lightweight “threads,” LOTS of Bas‘f °”’°'“l:"‘i_°rk";“th
— Argonne Nationa
th.em . Laboratory é
— Different approaches to locality — Lawrence Berkeley National Argonne
awareness/management Laboratory /e .
. . — Rice University "/'_"\"| o
e High-level (sequential) language — DARPA HPCS program
constructs
— Rich array data types (part of the base languages)

— Strongly typed object oriented base design
Extensible language model

Generic programming

2 Managed by UT-Battelle

for the Department of Energy Elwasif HPCS_SC08

Concurrency: The next generation HpeS
e Single initial thread of control
— Parallelism through language constructs

e True global view of memory, one-sided
access model

e Support task and data parallelism
e “Threads” grouped by “memory locality”
e Extensible, rich distributed array capability

e Advanced concurrency constructs
— Parallel loops
— Generator-based looping and distributions
— Local and remote futures

3 Managed by UT-Battelle
for the Department of Energy Elwasif HPCS_SC08

What about productivity? HpeS

e Index sets/regions for arrays
— “Array language” (Chapel, X10)

o Safe(r) and more powerful language constructs
— Atomic sections vs. locks

— Sync variables and futures
— Clocks (X10)

e Type inference

e Leverage advanced IDE capabilities

e Units and dimensions (Fortress)

e Component management, testing, contracts (Fortress)

e Math/science-based presentation (Fortress)

4 Managed by UT-Battelle
for the Department of Energy Elwasif HPCS_SC08

Dynamic concurrency in MADNESS

Pseudo Chapel Code

0 refine (node) {
1 child = node.get children() ;
if (normf (node) < threshold) {
2 // local heuristic to match physical
3 // parallelism
if (n+l < log2 (maxThreads)) then
A // asynchronous node update
on child.locale do begin sumC[child]= ..
else
S // serial node update
sumC [child] = ..;
6 }
else {

) :)) // local heuristic to match physical
— Adaptive mesh in 1-6+ dimensions, ;; parallelism

very dynamic refinement if (n+l < log2(maxThreads)) then

. . // asynchronous data-driven refinement
_ Spatlal decomposmon by subtrees on child.locale do begin refine(child) ;

] . . else
— Distributed container enables // serial refinement
nonprocess-centric computing refine (child) ;
}}

— Compact parallel code using task-
parallelism and locality control

5 Managed by UT-Battelle
for the Department of Energy Elwasif HPCS_SC08

Fusion simulation: AORSA using Chapel

global view L2

Vip=f

Vip=f

a

local view

- Multiple spatial regions:
Languages provide well-defined

views

- Language and programming-
model interoperability needed to
Interact with existing libraries

- Language constructs such as
locales, regions, and places
provide natural mapping to local

view process abstraction—needed

to access existing libraries

6 Managed by UT-Battelle

for the Department of Energy

Elwasif HPCS_SC08

nnodex

>

)

i®)

@)

c

c
—— /

FourierSpace : main(2) distributed
(Block) = [1,/nnodex, 1..nnodey];

var fgrid, m [FourierSpace] real;

var PlasmaSpace:
sparse subdomain (FourierSpace) =
[i in FourierSpace] if mask(i) == 1 then i;

var pgrid : [PlasmaSpace] real;

var ierr = HPL_pzgesv (desc_a, PlasmaSpace

Parallel mesh sweeping in Chapel

!

var setT = new FinieElementPartiion (“mesh.dat”) ;
const setTCardinality: int = setT.GetCardinality();
enum{blue, green, red);
forall sweepDir in sweepDirections({
var waveFrontMask = newVector (int, 0..setTCardinality, blue) ;
waveFrontMask (0) = green
while (waveFrontMask.find (blue) {
forall fE in setT.getMembers () {
if (waveFrontMask (fE.getId() == blue)){
var setColor:bool = true
forall edge in fE.getEdges() {
const normal = fE..getEdgeNormal (edge)
if (normal * sweepDir < 0.0){
const neMemberId: int = setT.getNeigborMemberId (fE, edge) ;

if (waveFrontMask (neMemberId) != green){setColor = false;}
}
if (setColor == true){waveFrontMask (fE.getId()) = red;}
}
}
}
forall i in waveFrontMask { if (i != blue) { i = green;}}

Class Vector{ // Generic template class
def getType() type { return T;}
def getSize() {return rng.high - rng.low + 1;}
def getRange() {return rng;}
def getDomain() {return dom;}
def resize(n: range = 1..0){rng = n; dom = [rngl;}
def clear(){this.resize();}
def find(val: T): bool {
return linearSearch(data,val(l);}
def these() var {for i in dom {yield data(i);}}
// Members
type T;
var rng : range (int);
var value: T;
var dom domain(l) distributed(Block) = [rng];
var data: [dom] T = value;

(0):V¢

7 Managed by UT-Battelle
for the Department of Energy Elwasif HPCS_SC08

RIDGE

National Laboratory

Tradeoffs in HPLS language design Hpes

e Emphasis on parallel safety (X10) vs. expressivity
(Chapel, Fortress)

— Locality control and awareness
— X10: Explicit placement and access
— Chapel: User-controlled placement, transparent access

— Fortress: Placement “guidance” only, local/remote access blurry
(data may move!ll)

— What about mental performance models?

e Programming language representation
— Fortress: Allows mathlike representation
— Chapel, X10: Traditional programming language front end
— How much do developers gain from mathematical representation?

e Productivity/performance tradeoff
— Different users have different “sweet spots”

8 Managed by UT-Battelle
for the Department of Energy Elwasif HPCS_SC08

Remaining challenges UPES
e (Parallel) I/O model

e |Interoperability with (existing) languages and
programming models

e Better (preferably portable) performance
models and scalable memory models

— Especially for machines with 1M+ processors

e Other considerations:
— Viable gradual adoption strategy
— Building a complete development ecosystem

9 Managed by UT-Battelle
for the Department of Energy Elwasif HPCS_SC08

Contacts

Sadaf R. Alam Robert J. Harrison
alamsr@ornl.gov harrisonrj@ornl.gov
Richard F. Barrett Jeffery A. Kuehn
rbarrett@ornl.gov kuehn@ornl.gov
David E. Bernholdt Stephen W. Poole
bernholdtde@ornl.gov spoole@ornl.gov
Valmor F. de Almeida Aniruddha G. Shet
dealmeidav@ornl.gov shetag@ornl.gov

Wael R. Elwasif
elwasifwr@ornl.gov

10 Managed by UT-Battelle
for the Department of Energy Elwasif HPCS_SC08

