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Candidate languages

− Chapel (Cray) 
− Fortress (Sun) 
− X10 (IBM) 

Revolutionary approach to large-
scale parallel programming
• Million-way concurrency (and more) will be required 

on coming HPC systems

• The current “Fortran+MPI+OpenMP” model will 
not scale

• New languages from the DARPA HPCS program point the 
way toward the next-generation programming environment

• Emphasis on performance and productivity

• Not SPMD
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Based on joint work with

− Argonne National 
Laboratory

− Lawrence Berkeley National 
Laboratory

− Rice University

− DARPA HPCS program

• Not SPMD
– Lightweight “threads,” LOTS of 

them
– Different approaches to locality 

awareness/management

• High-level (sequential) language 
constructs

– Rich array data types (part of the base languages)
– Strongly typed object oriented base design
– Extensible language model
– Generic programming



Concurrency: The next generation

• Single initial thread of control
– Parallelism through language constructs

• True global view of memory, one-sided 
access model

• Support task and data parallelism

“Threads” grouped by “memory locality”
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• “Threads” grouped by “memory locality”

• Extensible, rich distributed array capability

• Advanced concurrency constructs
– Parallel loops

– Generator-based looping and distributions

– Local and remote futures



What about productivity?

• Index sets/regions for arrays 
– “Array language” (Chapel, X10) 

• Safe(r) and more powerful language constructs
– Atomic sections vs. locks
– Sync variables and futures 
– Clocks (X10) 

Type inference
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• Type inference

• Leverage advanced IDE capabilities

• Units and dimensions (Fortress) 
• Component management, testing, contracts (Fortress) 
• Math/science-based presentation (Fortress) 



refine(node) {
child = node.get_children();
...
if (normf(node) < threshold) {
// local heuristic to match physical
// parallelism
if ( n+1 < log2(maxThreads) ) then
// asynchronous node update
on child.locale do begin sumC[child]= ..
else      
// serial node update
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Pseudo Chapel Code

Dynamic concurrency in MADNESS
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sumC[child] = ..; 
}
else {
// local heuristic to match physical    
// parallelism
if ( n+1 < log2(maxThreads) ) then
// asynchronous data-driven refinement
on child.locale do begin refine(child);
else
// serial refinement
refine(child);

}}
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– Adaptive mesh in 1-6+ dimensions, 
very dynamic refinement

– Spatial decomposition by subtrees

– Distributed container enables 
nonprocess-centric computing

– Compact parallel code using task-
parallelism and locality control



const 
FourierSpace : domain(2) distributed

- Multiple spatial regions: 
Languages provide well-defined 

Fusion simulation: AORSA using Chapel

global view local view
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FourierSpace : domain(2) distributed
( Block ) = [1..nnodex, 1..nnodey];

var fgrid, mask : [FourierSpace] real;

var PlasmaSpace: 
sparse subdomain (FourierSpace) =
[i in FourierSpace] if mask(i) == 1 then i;

var pgrid : [PlasmaSpace] real;

var ierr = HPL_pzgesv (desc_a, PlasmaSpace);

Languages provide well-defined 
views

- Language and programming-
model interoperability needed to 
interact with existing libraries

- Language constructs such as 
locales, regions, and places
provide natural mapping to local 
view process abstraction—needed 
to access existing libraries



Parallel mesh sweeping in Chapel
var setT = new FinieElementPartiion(“mesh.dat”);
const setTCardinality: int = setT.GetCardinality();
enum{blue, green, red);
forall sweepDir in sweepDirections{
var waveFrontMask = newVector(int, 0..setTCardinality, blue);
waveFrontMask(0) = green
while (waveFrontMask.find(blue){
forall fE in setT.getMembers(){

if (waveFrontMask(fE.getId() == blue)){
var setColor:bool = true
forall edge in fE.getEdges(){

const normal = fE..getEdgeNormal(edge)
if (normal ^ sweepDir < 0.0){

const neMemberId: int = setT.getNeigborMemberId(fE, edge);
if (waveFrontMask(neMemberId) != green){setColor = false;}

}
if (setColor == true){waveFrontMask(fE.getId()) = red;}

}
}

}
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Class Vector{ // Generic template class
def getType() type { return T;}
def getSize() {return rng.high – rng.low + 1;}
def getRange() {return rng;}
def getDomain() {return dom;}
def resize(n: range = 1..0){rng = n; dom = [rng];}
def clear(){this.resize();}
def find(val: T): bool {

return linearSearch(data,val(1);} 
def these() var {for i in dom {yield data(i);}}
// Members
type T;
var rng : range(int);
var value: T;
var dom domain(1) distributed(Block) = [rng];
var data: [dom] T = value; 

}       
forall i in waveFrontMask { if (i != blue) { i = green;}}

}
}



Tradeoffs in HPLS language design
• Emphasis on parallel safety (X10) vs. expressivity            

(Chapel, Fortress) 
– Locality control and awareness

– X10: Explicit placement and access

– Chapel: User-controlled placement, transparent access

– Fortress: Placement “guidance” only, local/remote access blurry 
(data may move!!!) 

– What about mental performance models?  
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• Programming language representation
– Fortress: Allows mathlike representation

– Chapel, X10: Traditional programming language front end

– How much do developers gain from mathematical representation?

• Productivity/performance tradeoff
– Different users have different “sweet spots”



Remaining challenges

• (Parallel) I/O model

• Interoperability with (existing) languages and 
programming models

• Better (preferably portable) performance 
models and scalable memory models
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– Especially for machines with 1M+ processors

• Other considerations:
– Viable gradual adoption strategy

– Building a complete development ecosystem



Contacts

Sadaf R. Alam
alamsr@ornl.gov

Richard F. Barrett
rbarrett@ornl.gov

David E. Bernholdt
bernholdtde@ornl.gov

Robert J. Harrison
harrisonrj@ornl.gov

Jeffery A. Kuehn
kuehn@ornl.gov

Stephen W. Poole
spoole@ornl.gov

10 Managed by UT-Battelle
for the Department of Energy Elwasif_HPCS_SC08Elwasif_HPCS_SC08

10 Managed by UT-Battelle
for the Department of Energy

Valmor F. de Almeida
dealmeidav@ornl.gov

Wael R. Elwasif
elwasifwr@ornl.gov

Aniruddha G. Shet
shetag@ornl.gov


