
Presented by

Sudharshan Vazhkudai

Robust Storage Management in the 
Machine Room and Beyond

Computer Science Research Group
Computer Science and Mathematics Division

In collaboration with

Managed by UT-Battelle
for the Department of Energy

In collaboration with
ORNL

John Cobb

North Carolina State University
Xiaosong Ma, Zhe Zhang, Chao Wang, Frank Mueller

The University of British Columbia
Matei Ripeanu, Samer Al Kiswany

Virginia Tech
Ali Butt, Henry Monti



Problem space: Petascale storage crisis

• Data staging, offloading, and checkpointing are all affected by data 
unavailability and I/O bandwidth bottleneck issues

– Compute time wasted on staging at the beginning of the job
– Early staging and late offloading waste scratch space
– Delayed offloading renders result data vulnerable to purging
– Checkpointing terabytes of data to a traditional file system results in an 

I/O bottleneck
– Storage failure

• Significant contributor to system downtime and CPU underutilization (during 

2 Managed by UT-Battelle
for the Department of Energy Vazhkudai_Freeloader_SC08

Significant contributor to system downtime and CPU underutilization (during 
RAID reconstruction)

• Failures per year: 3–7% disks, 3–16% controllers, and up to 12% SAN switches; 
10x the rate expected from vendor specification sheets (J. Gray and C.V. Ingen, 
“Empirical measurements of disk failure rates and error rates,” Technical Report 
MSR-TR-2005-166, Microsoft, December 2005)

– Upshot:
• Uptime low

– Due to job resubmissions

– Because checkpoints and restarts are expensive

• Increased job wait times due to staging/offloading and storage errors

• Poor end-user data delivery options



Approach

• If you cannot afford a balanced system, develop 
management strategies to compensate

• Exploit opportunities throughout the HEC I/O stack
– Parallel file system

– Many unused resources: memory, cluster node-local 
storage, desktop idle storage (both in machine room and 
client-side)

3 Managed by UT-Battelle
for the Department of Energy Vazhkudai_Freeloader_SC08

client-side)

– Disparate storage entities including archives and remote 
sources

• Concerted use of aforementioned
– Can be brought to bear upon urgent supercomputing 

issues such as staging, offloading, prefetching, 
checkpointing, data recovery, I/O bandwidth bottleneck, 
and end-user data delivery



Global 
coordination

layer

Staging Offloading Checkpointing Prefetching

Scheduler Center-ide storage/processing

Service agents

Approach (cont’d)
• View the entire HPC center as a system

– New ways to optimize this system’s performance and availability

4 Managed by UT-Battelle
for the Department of Energy Vazhkudai_Freeloader_SC08

Support for Existing 
Storage Elements

Storage 
abstractions

layer

Node-local disks Workstation/storage 
server

Memory resources

Data 
communication 

pathway

Novel aggregate storage

Parallel file 
systems

Tape archives

Scalable I/O across the center
Collective 
downloads

Data 
sessions

Data 
shuffling

Data 
sieving

IBP /home@NFS



Global coordination

• Motivation: lack of global coordination between 
the storage hierarchy and system software

• As a start, need coordination between staging, 
offloading, and computation
– Problems with manual and scripted staging

• Human operational cost, wasted compute time/storage, and 

5 Managed by UT-Battelle
for the Department of Energy Vazhkudai_Freeloader_SC08

Human operational cost, wasted compute time/storage, and 
increased wait time due to resubmissions

– How?
• Explicit specification of I/O activities alongside computation 

in a job script
• Zero-charge data transfer queue
• Planning and orchestration



Coordinating data and computation
• Specification of I/O activities in PBS job script

– BEGIN STAGEIN
• retry=3; interval=20
• hsi -A keytab -k MyKeytab -l user ‘‘get /scratch/user/Destination: Input’’

– END STAGEIN
– BEGIN COMPUTATION 

• #PBS... 

– END COMPUTATION 
– BEGIN STAGEOUT ... END STAGEOUT

6 Managed by UT-Battelle
for the Department of Energy Vazhkudai_Freeloader_SC08

– BEGIN STAGEOUT ... END STAGEOUT

• Separate data transfer queue: zero charge
– Queuing up and scheduling data transfers
– Treats data transfers as “data jobs”
– Data transfers can now be charged, if need be

• Planning and orchestration
– Parsing into individual stage-in, compute, and stage-out jobs
– Dependency setup and management using resource 

manager primitives



Seamless data path
• Motivation: standard data availability techniques designed with 

persistent data in mind
– RAID techniques can be time consuming; a 160 GB disk takes on the 

order of dozens of minutes

– Multiple disk failure within a RAID group can be crippling

– I/O node failovers are not always possible (thousands of nodes)

– Need novel mechanisms to address “transient data availability” that 
complement existing approaches

• What makes it feasible?

7 Managed by UT-Battelle
for the Department of Energy Vazhkudai_Freeloader_SC08

– Natural data redundancy in the staged job data

– Job input data usually immutable

– Network costs drastically decreasing each year

– Better bulk transfer tools with support for partial data fetches

• How?
– Augmenting FS metadata with “recovery hints” from job script

– On-the-fly data reconstruction on another object storage target (OST)

– Patching from data source



Data recovery
• Embedding recovery metadata about transient job data into the 

Lustre parallel file system
– Extend Lustre metadata to include recovery hints
– Metadata extracted from job script
– “Source” and “sink” information becomes an integral part of 

transient data

• Failure detection to check for unavailable OSTs
• Reconstruction

8 Managed by UT-Battelle
for the Department of Energy Vazhkudai_Freeloader_SC08

– Locate substitute OSTs and allocate objects
– Mark data dirty in metadata directory service (MDS)
– Recover URI from MDS
– Compute missing data range

• Remote patching
– Reducing multiple authentication costs per dataset
– Automated interactive session with “Expect” for single sign-on
– Protocols: hsi, GridFTP, NFS



Results

M
ea

n
 w

ai
t t

im
e 

(s
)

4 8 16 32

1,000,000

100,000

10,000

1,000

100

10

1

Without reconstruction

With reconstruction

Data 
source

/scratch
parallel file 

system

/home

Machine room
Head node Compute nodes

End user

NFS
access hsi

access

Archive
Seamless I/O 

access via “data 
path”

Regular I/O 
access to 
staged data

I/O nodes Source copy of 
data set accessed 
using ftp, scp, 
GridFTP

Job queue

Data queue1,2
3 after 1, 
4 after 3

Job script

Planner

1. Stage data
2. Checkpoint setup
3. Compute job
4. Offload data

9 Managed by UT-Battelle
for the Department of Energy Vazhkudai_Freeloader_SC08

• Better use of users’ compute time allocation and decreased job 
turnaround time

• Optimal use of center’s scratch space, avoiding too early stage 
in and delayed offloading

• Reduces resubmissions due to result-data loss
• Reduces wait time: trace-driven simulation of LANL operational 

data + LCF scratch data

Stripe count
4 8 16 32system

Staging/offloading



Just-in-time staging

• Previous technique still stages way before 
job is ready to run
– Need just-in-time staging of input data

• Just-in-time framework uses
– Estimates of job wait times from batch queue 

prediction service

10 Managed by UT-Battelle
for the Department of Energy Vazhkudai_Freeloader_SC08

prediction service

– A set of user-specified intermediate nodes for 
decentralized staging instead of direct transfers

– NWS monitoring of links that adapt to changing 
link bandwidth to deliver by the predicted job 
run time

– Integration with PBS and Bittorrent



New storage abstractions

• Checkpointing TB of data to a central file system 
is cumbersome

– Need better tools to address the storage bandwidth 
bottleneck

• Options
– For large-scale supercomputers

• Machines can potentially be provisioned with solid-state 
memory

11 Managed by UT-Battelle
for the Department of Energy Vazhkudai_Freeloader_SC08

memory
• Dedicated processor pools and memory for checkpointing
• Many applications oversubscribe for processors in an 

attempt to plan for failure
– Use the oversubscribed processors

– For clusters and desktop grids
• Node-local storage is abundant

• Dedicated checkpoint storage device can 
expedite checkpointing



• Stdchk
– Aggregates storage space from a network of workstations 

(benefactors) to present a collective checkpoint storage
• Job’s own allocated nodes can contribute storage space

– Split checkpoint images into chunks and stripe them
– Central manager provides a stripe map for the 

checkpointing client
– Map is a benefactor to 

A checkpoint-friendly storage

12 Managed by UT-Battelle
for the Department of Energy Vazhkudai_Freeloader_SC08

– Map is a benefactor to 
chunk mapping

– Features
• POSIX file system API 

(figure)
• Checkpoint optimized 

data management
• Redundantly mounted 

on desktops in a desktop
grid or cluster nodes for 
FS-like access

Application

Userspace

Kernel

VFS

FUSENFSEXT3

stchk
FS API
Implementation

libifuse

stdchk



0

20

40

60

80

100

120

1 2 4 8

W
ri

te
 T

hr
o

ug
hp

ut
 (

M
B

/s
) 

Stripe width

Complete Local Write Incremental Write

Sliding-Window Write Local I/O

NFS Linear (iperf)

Checkpointing (cont’d)
• Features

– High throughput writes 
(graph shows achieved storage 
bandwidth ~ 110 MB/s on a 
Gb/s LAN)

– Incremental checkpointing and 
pruning of checkpoint files

• Compare chunk hashes from two 
successive intervals

• Initial experiments suggest a 10–25% 

Complete local write
Sliding-window write
NFS

Incremental write
iperf
Local I/O

1 2 4 8

Stripe width

120

100

80

60

40

20

0

W
ri

te
 th

ro
u

g
h

p
u

t (
M

B
/s

)

13 Managed by UT-Battelle
for the Department of Energy Vazhkudai_Freeloader_SC08

Initial experiments suggest a 10–25% 
reduction in size for BLCR checkpoints

• Purge images from previous interval once the current image is safely stored
• File system is unable to perform such optimizations

• Aggregate memory-based storage abstraction for large-scale 
supercomputers
– Aggregate memory space instead of storage

– Parallel I/O across distributed memory

– Lazy migration of images to a central file system
• Unused/underutilized processors can perform this operation



End-user data delivery: An architecture 
for eager offloading of result data
• Offloading entails moving large data between center 

and end-user resources
– Failure prone: end resource unavailability, transfer errors

Offloading errors affect Supercomputer serviceability 

• Eager offloading
– Utilizes army of intermediate storage locations specified by 

the user in the job script

14 Managed by UT-Battelle
for the Department of Energy Vazhkudai_Freeloader_SC08

the user in the job script
– Choose dynamically changing data paths/nodes to satisfy a 

given SLA; monitor links using NWS
– Offload constraint: before center purge and by the user-

specified deadline
• Toffload < Min(Dpurge, JSLA)

– Use replication and erasure coding of chunks for 
redundancy

– Integration with PBS and Bittorrent



Eager 
offloading 
architecture

Result-data

Node 
manager

Offload 
manager

Erasure 
coding

Transfer 
module

NWS 
query

Center SLa

NWS

Chunks

Nodes for overlay

SLA 
compliance

Results: Adapting to dynamic network behavior

15 Managed by UT-Battelle
for the Department of Energy Vazhkudai_Freeloader_SC08

p g y

SLA is 600 seconds

Transferring 2.1 GB file0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 51 101 151 201 251 301 351 401 451 501 551

A
va

ila
b

le
 b

an
d

w
id

th
 a

t 
ea

ch
 n

o
d

e 
(M

B
/s

)

Time (s)Time 10s direct 
bandwidth reduced 
by 1/10

Time 150s 
node bandwidth 
drops to 1MB/s

Time 250s 
node Fails

A staged offload is capable 
of adapting to bandwidth 
changes or failures



Contact

Sudharshan Vazhkudai
Computer Science Research Group
Computer Science and Mathematics Division
(865) 576-5547
vazhkudaiss@ornl.gov

16 Managed by UT-Battelle
for the Department of Energy Vazhkudai_Freeloader_SC08Vazhkudai_Freeloader_SC08

16 Managed by UT-Battelle
for the Department of Energy

http://www.csm.ornl.gov/~vazhkuda/Storage.html


