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Problem space: Petascale storage crisis

• Data staging, offloading, and checkpointing are all affected by data 
unavailability and I/O bandwidth bottleneck issues

– Compute time wasted on staging at the beginning of the job
– Early staging and late offloading waste scratch space
– Delayed offloading renders result data vulnerable to purging
– Checkpointing terabytes of data to a traditional file system results in an 

I/O bottleneck
– Storage failure

• Significant contributor to system downtime and CPU underutilization (during 
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Significant contributor to system downtime and CPU underutilization (during 
RAID reconstruction)

• Failures per year: 3–7% disks, 3–16% controllers, and up to 12% SAN switches; 
10x the rate expected from vendor specification sheets (J. Gray and C.V. Ingen, 
“Empirical measurements of disk failure rates and error rates,” Technical Report 
MSR-TR-2005-166, Microsoft, December 2005)

– Upshot:
• Uptime low

– Due to job resubmissions

– Because checkpoints and restarts are expensive

• Increased job wait times due to staging/offloading and storage errors

• Poor end-user data delivery options



Approach

• If you cannot afford a balanced system, develop 
management strategies to compensate

• Exploit opportunities throughout the HEC I/O stack
– Parallel file system

– Many unused resources: memory, cluster node-local 
storage, desktop idle storage (both in machine room and 
client-side)
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client-side)

– Disparate storage entities including archives and remote 
sources

• Concerted use of aforementioned
– Can be brought to bear upon urgent supercomputing 

issues such as staging, offloading, prefetching, 
checkpointing, data recovery, I/O bandwidth bottleneck, 
and end-user data delivery



Global 
coordination

layer
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Scheduler Center-ide storage/processing

Service agents

Approach (cont’d)
• View the entire HPC center as a system

– New ways to optimize this system’s performance and availability
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Global coordination

• Motivation: lack of global coordination between 
the storage hierarchy and system software

• As a start, need coordination between staging, 
offloading, and computation
– Problems with manual and scripted staging

• Human operational cost, wasted compute time/storage, and 
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Human operational cost, wasted compute time/storage, and 
increased wait time due to resubmissions

– How?
• Explicit specification of I/O activities alongside computation 

in a job script
• Zero-charge data transfer queue
• Planning and orchestration



Coordinating data and computation
• Specification of I/O activities in PBS job script

– BEGIN STAGEIN
• retry=3; interval=20
• hsi -A keytab -k MyKeytab -l user ‘‘get /scratch/user/Destination: Input’’

– END STAGEIN
– BEGIN COMPUTATION 

• #PBS... 

– END COMPUTATION 
– BEGIN STAGEOUT ... END STAGEOUT
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– BEGIN STAGEOUT ... END STAGEOUT

• Separate data transfer queue: zero charge
– Queuing up and scheduling data transfers
– Treats data transfers as “data jobs”
– Data transfers can now be charged, if need be

• Planning and orchestration
– Parsing into individual stage-in, compute, and stage-out jobs
– Dependency setup and management using resource 

manager primitives



Seamless data path
• Motivation: standard data availability techniques designed with 

persistent data in mind
– RAID techniques can be time consuming; a 160 GB disk takes on the 

order of dozens of minutes

– Multiple disk failure within a RAID group can be crippling

– I/O node failovers are not always possible (thousands of nodes)

– Need novel mechanisms to address “transient data availability” that 
complement existing approaches

• What makes it feasible?
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– Natural data redundancy in the staged job data

– Job input data usually immutable

– Network costs drastically decreasing each year

– Better bulk transfer tools with support for partial data fetches

• How?
– Augmenting FS metadata with “recovery hints” from job script

– On-the-fly data reconstruction on another object storage target (OST)

– Patching from data source



Data recovery
• Embedding recovery metadata about transient job data into the 

Lustre parallel file system
– Extend Lustre metadata to include recovery hints
– Metadata extracted from job script
– “Source” and “sink” information becomes an integral part of 

transient data

• Failure detection to check for unavailable OSTs
• Reconstruction
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– Locate substitute OSTs and allocate objects
– Mark data dirty in metadata directory service (MDS)
– Recover URI from MDS
– Compute missing data range

• Remote patching
– Reducing multiple authentication costs per dataset
– Automated interactive session with “Expect” for single sign-on
– Protocols: hsi, GridFTP, NFS



Results
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• Better use of users’ compute time allocation and decreased job 
turnaround time

• Optimal use of center’s scratch space, avoiding too early stage 
in and delayed offloading

• Reduces resubmissions due to result-data loss
• Reduces wait time: trace-driven simulation of LANL operational 

data + LCF scratch data

Stripe count
4 8 16 32system

Staging/offloading



Just-in-time staging

• Previous technique still stages way before 
job is ready to run
– Need just-in-time staging of input data

• Just-in-time framework uses
– Estimates of job wait times from batch queue 

prediction service
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prediction service

– A set of user-specified intermediate nodes for 
decentralized staging instead of direct transfers

– NWS monitoring of links that adapt to changing 
link bandwidth to deliver by the predicted job 
run time

– Integration with PBS and Bittorrent



New storage abstractions

• Checkpointing TB of data to a central file system 
is cumbersome

– Need better tools to address the storage bandwidth 
bottleneck

• Options
– For large-scale supercomputers

• Machines can potentially be provisioned with solid-state 
memory
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memory
• Dedicated processor pools and memory for checkpointing
• Many applications oversubscribe for processors in an 

attempt to plan for failure
– Use the oversubscribed processors

– For clusters and desktop grids
• Node-local storage is abundant

• Dedicated checkpoint storage device can 
expedite checkpointing



• Stdchk
– Aggregates storage space from a network of workstations 

(benefactors) to present a collective checkpoint storage
• Job’s own allocated nodes can contribute storage space

– Split checkpoint images into chunks and stripe them
– Central manager provides a stripe map for the 

checkpointing client
– Map is a benefactor to 

A checkpoint-friendly storage
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– Map is a benefactor to 
chunk mapping

– Features
• POSIX file system API 

(figure)
• Checkpoint optimized 

data management
• Redundantly mounted 

on desktops in a desktop
grid or cluster nodes for 
FS-like access

Application
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Implementation

libifuse

stdchk



0

20

40

60

80

100

120

1 2 4 8

W
ri

te
 T

hr
o

ug
hp

ut
 (

M
B

/s
) 

Stripe width

Complete Local Write Incremental Write

Sliding-Window Write Local I/O

NFS Linear (iperf)

Checkpointing (cont’d)
• Features

– High throughput writes 
(graph shows achieved storage 
bandwidth ~ 110 MB/s on a 
Gb/s LAN)

– Incremental checkpointing and 
pruning of checkpoint files

• Compare chunk hashes from two 
successive intervals

• Initial experiments suggest a 10–25% 
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Initial experiments suggest a 10–25% 
reduction in size for BLCR checkpoints

• Purge images from previous interval once the current image is safely stored
• File system is unable to perform such optimizations

• Aggregate memory-based storage abstraction for large-scale 
supercomputers
– Aggregate memory space instead of storage

– Parallel I/O across distributed memory

– Lazy migration of images to a central file system
• Unused/underutilized processors can perform this operation



End-user data delivery: An architecture 
for eager offloading of result data
• Offloading entails moving large data between center 

and end-user resources
– Failure prone: end resource unavailability, transfer errors

Offloading errors affect Supercomputer serviceability 

• Eager offloading
– Utilizes army of intermediate storage locations specified by 

the user in the job script
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the user in the job script
– Choose dynamically changing data paths/nodes to satisfy a 

given SLA; monitor links using NWS
– Offload constraint: before center purge and by the user-

specified deadline
• Toffload < Min(Dpurge, JSLA)

– Use replication and erasure coding of chunks for 
redundancy

– Integration with PBS and Bittorrent



Eager 
offloading 
architecture
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Results: Adapting to dynamic network behavior
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http://www.csm.ornl.gov/~vazhkuda/Storage.html


