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I/O for large-scale scientific computing

• Reading input and restart files

• Writing checkpoint files

• Writing movie, history files

• Gaps of understanding across 
domains; efficiency is low

SciDAC climate studies visualization at ORNL
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The I/O gap

I/O gap

Application I/O demand

I/O system capability
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Widening gap between
application I/O demands
and system I/O capability
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Checkpoints eventually take 
longer than system MTTF

Application I/O demand

Expected time between system failures
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Gap may grow too large
for existing techniques 
(e.g.,checkpointing) to be
viable because of decreases 
in system reliability as
systems get larger



Insight into I/O behavior
• Performance data collection infrastructure for Cray XT

• Gathers detailed I/O request data without changes to 
application source code

• Useful for
– Characterizing application I/O
– Driving storage system 

simulations
– Deciding how and where to

Application

Instrumented MPI Function
Wrapper Library

MPI Library (Including MPI-I/O)
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– Deciding how and where to
optimize I/O

Instrumented POSIX I/O
Wrapper Library

POSIX I/O Functions

Portals Data Transfer Layer

Lustre File System

Instrumented Cray XT MPI 
Software Stack

Jaguar Cray XT 
system at ORNL



Optimization through parallel I/O libraries
• Advantages from parallel 

I/O libraries
– Interfacing application, 

runtime, and operating 
system

– Ease of solution 
deployment

Host bus interface
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• Challenges approachable via libraries 
1. Application hints and data manipulation

2. Processor/memory architecture

3. Parallel I/O protocol processing overhead

4. File-system–specific techniques

5. Network topology and status
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Performance and optimization I/O on Jaguar
Yu, Vetter, Oral, IPDPS 2008
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Opportunistic and adaptive MPI-I/O 
for Lustre (OPAL) 
Yu, Vetter, Canon, SNAPI 2007

• Overcome the restriction of a proprietary MPI-IO stack
• Improved data-sieving implementation; arbitrary striping specification
• Lustre stripe-aligned file domain partitioning
• Release via MVAPICH-1.0 and MPICH2-1.0.7

An open-source implementation of MPI-IO 
(Cray XT and Linux clusters)
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Partitioned collective I/O (ParColl)—
Yu, Vetter, ICPP 2008
• Collective I/O is good for small I/O

request aggregation

• But global synchronization within is 
a barrier to scalability

• ParColl partitions global processes, 
I/O aggregators, and the shared 
global file appropriately for scalable 
I/O aggregation

Extended two-phase

MPI Lustre

Partitioned Collective I/O

MPI-I/O
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Contacts

Jeffrey S. Vetter
Leader
Future Technologies Group 
Computer Science and Mathematics Division 
(865) 356-1649
vetter@ornl.gov

Weikuan Yu
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