
Presented by

Fault-Tolerance Challenges

and Solutions

Al Geist

Computer Science Research Group
Computer Science and Mathematics Division

2 Managed by UT-Battelle
for the U.S. Department of Energy Geist_FT_SC10

Rapid growth in scale drives

fault tolerance need

Challenges

• Fundamental assumptions of
applications and system software
design did not anticipate
exponential growth in parallelism

• Number of system components
increasing faster than component
reliability

• Mean time between failures of
minutes or seconds for exascale
built today

• Silent error rates increasing

• Checkpoint/restart overhead too
large for future systems

time

2000 2015 2018

Time to checkpoint grows larger as

problem size increases

MTTI grows smaller as scale increases

3 Managed by UT-Battelle
for the U.S. Department of Energy Geist_FT_SC10

Hardware reasons for the

worsening problem

1. Number of components (both memory and processors) will increase by an order
of magnitude, which will increase hard and soft errors

2. Smaller circuit sizes, running at lower voltages to reduce power consumption,
increases the probability of switches flipping spontaneously due to thermal and
voltage variations as well as radiation, increasing soft errors

3. Power management cycling significantly decreases the components’ lifetimes due
to thermal and mechanical stresses

4. Resistance to add additional HW detection and recovery logic right on the chips
to detect silent errors, because it will increase power consumption by 15% and
increase the chip costs

5. Heterogeneous systems make error detection and recovery even harder; for
example, detecting and recovering from an error in a GPU can involve hundreds of
threads simultaneously on the GPU and hundreds of cycles in drain pipelines to
begin recovery

4 Managed by UT-Battelle
for the U.S. Department of Energy Geist_FT_SC10

Software reasons for the worsening

problem

1. Existing fault tolerance techniques (global checkpoint/global restart)
will be unpractical at exascale

2. There is no standard fault model. Neither is there a standard fault test
suite nor metrics to stress resilience solutions and compare them fairly

3. Errors, fault root causes, and propagation are not well understood

4. MPI does not offer a paradigm for resilient programming. A failure of
a single task often leads to the killing of the entire application

5. Present applications and system software are neither fault tolerant
nor fault aware and are not designed to confine errors/faults, to avoid or
limit their propagation, and to recover from them when possible

5 Managed by UT-Battelle
for the U.S. Department of Energy Geist_FT_SC10

ORNL is leading research to solve the

Exascale Resilience Challenges

Research Areas

• Local recovery and migration

• Development of a standard fault model and better
understanding of types/rates of faults

• Improved hardware and software reliability

• Greater integration across entire stack

• Fault-resilient algorithms and applications

6 Managed by UT-Battelle
for the U.S. Department of Energy Geist_FT_SC10

Need a standard fault model and a

holistic solution

Fault-Tolerance Backplane

We need coordinated fault awareness, prediction, and recovery

across the entire HPC system from the application to the hardware

Middleware

Applications

Operating System

Hardware

CIFTS project

―Prediction and prevention are critical because

the best fault is the one that never happens‖

Detection

Monitor

Logger

Configuration

Notification

Event

manager

Prediction

and

prevention

Recovery

Autonomic

actions

Recovery

services

Project under way at ANL, ORNL, LBL, UTK, IU, OSU

7 Managed by UT-Battelle
for the U.S. Department of Energy Geist_FT_SC10

Fault model:

Three steps and error types

1. Detection that something has gone wrong

• System: Detection in hardware

• Framework: Detection by runtime environment

• Library: Detection in math or communication library

2. Notification of the application, runtime, or system components

• Interrupt: Signal sent to job or
system component

• Error code returned by
application routine

3. Recovery of the application
to the fault

• By the system

• By the application

• Neither: Natural fault tolerance

7 Managed by UT-Battelle
for the U.S. Department of Energy

Geist_FT_SC09

Types of errors (h/w or s/w)

• Hard errors: permanent errors that

cause system to hang or crash

• Soft errors: transient errors, either

correctable or short term failure

• Silent errors: undetected errors either

permanent or transient. Concern is that

simulation data or calculation has been

corrupted and no error reported

8 Managed by UT-Battelle
for the U.S. Department of Energy Geist_FT_SC10

Fault model:

Six options for system to handle failures

Need standard API for each application (or component)

to specify to the system what to do if a fault occurs

8 Managed by UT-Battelle
for the U.S. Department of Energy

• Restart—from checkpoint or from beginning

• Notify application and let it handle the problem

• Migrate task to other hardware before failure

• Reassign work to spare processor(s)

• Replicate tasks across machine

• Ignore the fault altogether

9 Managed by UT-Battelle
for the U.S. Department of Energy Geist_FT_SC10

Fault model:

Five recovery modes for MPI applications

Harness project’s FT-MPI explored five modes of recovery

• ABORT: Just do as vendor implementations

• BLANK: Leave holes (but make sure collectives
do the right thing afterward)

• SHRINK: Reorder processes to make
a contiguous communicator (some ranks change)

• REBUILD: Respawn lost processes
and add them to MPI_COMM_WORLD

• REBUILD_ALL: Same as REBUILD except that it rebuilds all communicators,
and groups and resets all key values, etc.

The MPI-3 forum is discussing these and other

options that allow applications to recover from faults

These modes

affect the size

(extent) and

ordering of the

communicators

10 Managed by UT-Battelle
for the U.S. Department of Energy Geist_FT_SC10

Need to develop new paradigms for

applications to handle faults

1. Restart from checkpoint file
[large apps today]

2. Restart from diskless checkpoint
[avoids stressing the I/O system

and causing more faults]

3. Recalculate lost data from in-memory RAID

N
o

 s
ta

te
 s

av
ed

S
o

m
e

st
at

e
sa

ve
d

4. Lossy recalculation of lost data
[for iterative methods]

5. Recalculate lost data from initial

and remaining data

6. Replicate computation across system

7. Reassign lost work to another resource

8. Use natural fault-tolerant algorithms

Store checkpoint

in memory

Need to

develop rich

methodology to

―run through‖

faults

11 Managed by UT-Battelle
for the U.S. Department of Energy Geist_FT_SC10

• Can’t afford to run every job

three (or more) times

• Yearly allocations

are like $5M–$10M grants

Increasing need for

detection and validation

Validation of an answer on such large systems is a growing
problem; simulations are more complex; solutions are being
sought in regions never before explored

• Fault may not be detected

• Recovery introduces perturbations

• Result may depend on which nodes fail

• Result looks reasonable, but it is actually wrong

11 Managed by UT-Battelle
for the U.S. Department of Energy Geist_FT_SC10

12 Managed by UT-Battelle
for the U.S. Department of Energy Geist_FT_SC10

12 Managed by UT-Battelle
for the U.S. Department of Energy

Contact

Al Geist

Computer Science Research Group
Computer Science and Mathematics Division
(865) 574-3153
gst@ornl.gov

