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Rapid growth in scale drives 

fault tolerance need

Challenges

• Fundamental assumptions of 
applications and system software 
design did not anticipate 
exponential growth in parallelism

• Number of system components 
increasing faster than component 
reliability

• Mean time between failures of 
minutes or seconds for exascale
built today

• Silent error rates increasing 

• Checkpoint/restart overhead too 
large for future systems
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Time to checkpoint grows larger as 

problem size increases

MTTI grows smaller as scale increases
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Hardware reasons for the 

worsening problem

1. Number of components (both memory and processors) will increase by an order 
of magnitude, which will increase hard and soft errors

2. Smaller circuit sizes, running at lower voltages to reduce power consumption, 
increases the probability of switches flipping spontaneously due to thermal and 
voltage variations as well as radiation, increasing soft errors

3. Power management cycling significantly decreases the components’ lifetimes due 
to thermal and mechanical stresses

4. Resistance to add additional HW detection and recovery logic right on the chips 
to detect silent errors, because it will increase power consumption by 15% and 
increase the chip costs

5. Heterogeneous systems make error detection and recovery even harder; for 
example, detecting and recovering from an error in a GPU can involve hundreds of 
threads simultaneously on the GPU and hundreds of cycles in drain pipelines to 
begin recovery
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Software reasons for the worsening 

problem

1. Existing fault tolerance techniques (global checkpoint/global restart) 
will be unpractical at exascale

2. There is no standard fault model. Neither is there a standard fault test 
suite nor metrics to stress resilience solutions and compare them fairly 

3. Errors, fault root causes, and propagation are not well understood 

4. MPI does not offer a paradigm for resilient programming. A failure of 
a single task often leads to the killing of the entire application

5. Present applications and system software are neither fault tolerant 
nor fault aware and are not designed to confine errors/faults, to avoid or 
limit their propagation, and to recover from them when possible
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ORNL is leading research to solve the 

Exascale Resilience Challenges

Research Areas

• Local recovery and migration

• Development of a standard fault model and better 
understanding of types/rates of faults 

• Improved hardware and software reliability

• Greater integration across entire stack

• Fault-resilient algorithms and applications
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Need a standard fault model and a 

holistic solution

Fault-Tolerance Backplane

We need coordinated fault awareness, prediction, and recovery

across the entire HPC system from the application to the hardware

Middleware

Applications

Operating System

Hardware

CIFTS project

―Prediction and prevention are critical because

the best fault is the one that never happens‖

Detection

Monitor

Logger

Configuration

Notification

Event 

manager

Prediction

and

prevention

Recovery

Autonomic

actions

Recovery

services

Project under way at ANL, ORNL, LBL, UTK, IU, OSU
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Fault model:

Three steps and error types 

1. Detection that something has gone wrong

• System: Detection in hardware

• Framework: Detection by runtime environment

• Library: Detection in math or communication library

2. Notification of the application, runtime, or system components

• Interrupt: Signal sent to job or 
system component

• Error code returned by 
application routine

3. Recovery of the application 
to the fault

• By the system

• By the application

• Neither: Natural fault tolerance
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Types of errors (h/w or s/w)

• Hard errors: permanent errors that 

cause system to hang or crash

• Soft errors: transient errors, either 

correctable or short term failure

• Silent errors: undetected errors either 

permanent or transient. Concern is that 

simulation data or calculation has been 

corrupted and no error reported
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Fault model:

Six options for system to handle failures

Need standard API for each application (or component)

to specify to the system what to do if a fault occurs
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• Restart—from checkpoint or from beginning

• Notify application and let it handle the problem

• Migrate task to other hardware before failure

• Reassign work to spare processor(s)

• Replicate tasks across machine

• Ignore the fault altogether
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Fault model:

Five recovery modes for MPI applications

Harness project’s FT-MPI explored five modes of recovery

• ABORT: Just do as vendor implementations

• BLANK: Leave holes (but make sure collectives
do the right thing afterward)

• SHRINK: Reorder processes to make
a contiguous communicator (some ranks change)

• REBUILD: Respawn lost processes
and add them to MPI_COMM_WORLD

• REBUILD_ALL: Same as REBUILD except that it rebuilds all communicators, 
and groups and resets all key values, etc.

The MPI-3 forum is discussing these and other 

options that allow applications to recover from faults

These modes  

affect the size 

(extent) and 

ordering of the 

communicators
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Need to develop new paradigms for 

applications to handle faults

1. Restart from checkpoint file 
[large apps today]

2. Restart from diskless checkpoint
[avoids stressing the I/O system

and causing more faults]

3. Recalculate lost data from in-memory RAID
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4. Lossy recalculation of lost data
[for iterative methods]

5. Recalculate lost data from initial

and remaining data

6. Replicate computation across system

7. Reassign lost work to another resource

8. Use natural fault-tolerant algorithms

Store checkpoint

in memory

Need to

develop rich 

methodology to 

―run through‖ 

faults
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• Can’t afford to run every job

three (or more) times

• Yearly allocations

are like $5M–$10M grants

Increasing need for 

detection and validation

Validation of an answer on such large systems is a growing 
problem; simulations are more complex; solutions are being 
sought in regions never before explored

• Fault may not be detected

• Recovery introduces perturbations

• Result may depend on which nodes fail

• Result looks reasonable, but it is actually wrong
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