Information Fusion:
Science and Engineering of Combining Information from Multiple Sources

Presented by
Nagi Rao
Complex Systems
Computer Science and Mathematics Division

Research supported by the Mathematics of Complex Networked Systems Program
Office of Advanced Scientific Computing
Department of Energy’s Office of Science
Information Fusion at ORNL

- ORNL Instrumental in formulating and fostering this multi-disciplinary area
 - First DOE-sponsored workshop in 1996
 - Foundational analytical and applied work - originally funded by DOE BES Engineering Research Program
 - Statistical foundations for measurement data – also funded by ASCR Statistics Program
 - Cyber-physical networks – ASCR Applied Math Program 2009 - present

- Foundational work at ORNL:
 - Showed tractability of generic information fusion problem using measurements
 - Developed isolation and projective fusion methods

- Applications:
 - Fusion of embrittlement predictors of light-water reactors
 - Fusion of ultrasonic and infra-red sensors for robotics applications
 - Localization of low-level radiation sources by fusing network measurement

- Area of Increasing Importance
 - Applications to cyber-security, cyber-physical systems and sensor networks
First workshop on Information Fusion – 1996

- Department of Energy lead sponsor
- Brought together scientists from
 - Engineering, Computer Science, Mathematics, Econometrics, Bioinformatics, Statistics
 - This workshop launched the field of Information Fusion
- Now, integral part of disciplines including
 - Distributed Sensor Networks
 - Cyber Data Mining
 - Cyber-Physical Networks
- Journals
 - *Advances in Information Fusion* (2006)
- Dedicated international conferences
 - International Conf. on Information Fusion
 - International Conf. on Multisensor Fusion and Integration
 - International Colloquium on Information Fusion
Information Fusion is a very old area!
18th and 19th centuries

- 1786, Condorcet Jury Theorem (224 years ago)
- Democracy of N members each with probability p of making right decision: decision probability of majority under statistical independence:
 \[
 p_N = \begin{cases}
 > p & \text{if } p > 1/2 \\
 = 1/2 & \text{if } p = 1/2 \\
 < p & \text{if } p < 1/2
 \end{cases}
 \]
- In general, “good” fuser is better than a member but “bad” fuser could be worse than member—if p is known to be <1/2, take opposite of majority
- 1818, Laplace composite method: Certain differential equations are “better” solved by combining a number of “suboptimal” solution methods
- 1956, Reliability: Von Neumann showed how to build a reliable system using unreliable components under independent failures
- 1962, Pattern recognition: Chow showed optimal Bayesian threshold fuser for multiple independent classifiers
- 1969, Forecasting: Bates and Granger showed “better” forecasts can be made by combining different forecast methods rather than picking one of them—variance can be reduced by weighted majority fuser
- Importance of “fusing” rather than picking the “best” has been demonstrated in a number of disparate disciplines—political economics, applied mathematics, reliability, pattern recognition, forecasting
What is new about “recent” Information Fusion area – last decade or two?

• Rich information sources
 – Sophisticated sensors – visual, hyperspectral, radiation, chemical, biological, and others
 – Information sensors – web crawlers, information servers, sophisticated databases

• Expanding application areas
 – Cyber Security
 – Cyber-Physical Networks
 – Sensor Networks
 – Data Mining
 – Sensor Fusion
 – Detection and Classification
Objective: To design a fuser that provides performance guarantees based on measurements.

\[f(Y^{(1)}, Y^{(2)}, \ldots, Y^{(N)}) = f(Y) \]

\[X \] and \(Y^{(i)} \) are related by an unknown distribution \(P_{X, Y^{(i)}} \)
Overview of ORNL solutions: Finite sample guarantees

- General solution
 - Showed that the problem is solvable in principle by empirical risk minimization
 - Under finiteness of scale-sensitive dimension of fuser class, finite sample guarantees can be provided

- Specific fuser methods
 - Empirical risk minimization
 - Vector space methods
 - Linear fusers
 - Kurkova’s neural networks
 - Sigmoid neural networks
 - Nonlinear statistical estimators
 - Nadaraya-Watson estimator
 - Regressograms
 - We developed finite sample guarantees for the fuser
Empirical risk minimization method

Compute the fuser f from F to minimize the empirical risk

$$I_{emp}(f) = \frac{1}{l} \sum_{i=1}^{l} \left[X_i - f_i(Y_i^{(1)}, Y_i^{(2)}, \ldots, Y_i^{(3)}) \right]^2$$

Consider expected best fuser

$$f^* : I_F(f) = \min_{f \in F} I_F(f)$$

Empirical best fuser

$$\hat{f} : I_{emp}(f) = \min_{f \in F} I_{emp}(f)$$

If F satisfies certain properties, we can ensure

$$P_{X,Y} \left\{ I_F(\hat{f}) - I_F(f^*) > \varepsilon \right\} < \delta$$

irrespective of sensor distributions

Weakest deterministic characterization available under which this condition can be guaranteed is based on scale-sensitive dimension of F
Nearest neighbor projective fuser

• Basic idea
 – Decompose into Voronoi regions of measurements
 – Given a test point
 • Identify Voronoi region that contains it
 • Use the estimator with least error as a predictor

• Performance
 – Computational: polynomial-time computable
 – Finite-sample result: given finite sample, fuser performs almost as well as optimal with a high probability
 • First finite sample result for projective fusers
Application: Sigmoid neural network estimators

- Training neural networks for function estimation
 - Training problem is NP-hard
 - Most training algorithms yield suboptimal results
 - Backpropagation algorithm is sensitive to starting weights and learning rate

Sigmoid neural networks: different starting weights and learning rates
Fused neural network estimators

Nearest neighbor projective fuser
- Uses locally best estimators
- Note the worst overall estimator is good at certain parts

Linear fuser
Picks a single weight for entire domain
Embrittlement predictions

• Overall goal: Predict residual defects in materials due to neutron-induced damage in light-water reactors

• Transition temperature shift – vital indicator of embrittlement level
 – Several predictors available (generic sensor in our case)
 • Fluence-based models
 • Eason’s models
 • Reg. Guide 1.99 model
 • Feedforward neural network models
 • Nearest neighbor model

• Fusion approach: Combine all the predictors
 – General Electric boiling water reactor data
 • Isolation fuser (linear least squares)
 – 56.5% and 32.8% reduction in uncertainty for plate and weld data, respectively, over best model
 • Nearest neighbor projective fuser
 – 67.3% and 52.4% reduction in uncertainty for plate and weld data, respectively, over best model
Motivating scenario: Detection of low-level radiation sources

- Sources of low-level radiation
 - Unexploded dirty bombs during storage and transportation
 - Slow leakage or controlled injection
 - Combined with conventional explosions
- It is becoming easier to procure radioactive material

Task: Detect the sources based on sensor measurements

- Several underlying math problems related to detection networks are open
- Our work
 - Addresses network-based detection
 - Provides answers using statistical estimation and packing numbers
Difficulty of detecting low-level radiation sources

- The radiation levels are only slightly above the background levels and may appear to be “normal” background variations
 - Varied background: Depends on local natural and man-made sources and may vary from area to area
 - Probabilistic measurements: Radiation measurements are inherently random due to underlying physical process—gamma radiation measurements follow Poisson process

- Several solutions are based on thresholding sensor measurements
 - Well-studied problem: Has been studied for decades using single or co-located sensors: analytical, experimental, and sensor networks offer “newer” solutions but also questions
 - Recent results (2010): ORNL developed mathematical quantification for a network of sensors to achieve better performance than single-sensor detectors
Detection of sources amidst background

- A traditional detection fusion method:
 1. Sequential Probability Ratio Test (SPRT) to infer detection (yes/no) from measurements at sensors
 2. Fuse the Boolean decisions at fusion center

- ORNL results (2010): Developed methods that out-perform this established method of fusing decisions
Our method: Detection by using localization $\Theta_{\hat{S}}$

Proposed method for detection:

1. Estimate the source parameters using measurements $\hat{A}_S; (\hat{x}_S, \hat{y}_S)$
2. Utilize likelihood ratio test $\Theta_{\hat{S}}$ at the fusion center

$$F_L(P_{0,1}, P_{1,0}, \hat{A}_i, B_i, n) < \sum_{j=1}^{n} m_{i,j} < F_H(P_{0,1}, P_{1,0}, \hat{A}_i, B_i, n)$$

where $\hat{A}_i = F_S(\hat{A}_S, \hat{x}_S, \hat{y}_S, x_i, y_i)$

Sensor 1

Sensor N

DOD Radar Fusion Framework: Localization is performed after detection, but our results do the opposite as in computer vision applications
Improved detection through localization

• Improved detection using measurements at fusion center compared to existing decision fusion methods, using robust localization, under:
 – General nonsmooth conditions: 2010
 • Conditions: Separability of probability ratios
 – Complex analysis and less-intuitive conditions
 + Valid under complex shielding of radiation sources
 – Smooth conditions: 2009
 • Conditions: Lipschitz separable probability ratios, and Lipschitz source intensity
 + Intuitive conditions (“bigger” parameter space is better)
 – Valid typically under open-space environments

• First mathematical proofs for this class of problems to show
 1. A network of sensors performs better than single or co-located sensors
 2. Measurement “fusion” performs better than detection fusion
Conclusions

• Information Fusion is a multidisciplinary area
 – In existence for centuries—political economics, forecasting, statistics, reliability, pattern recognition
 – New applications and developments—sensor networks, cyber security, data mining, cyber-physical networks

• ORNL developed solutions to generic sensor fusion problems
 – Solutions based on empirical estimation and statistical estimators
 – Two general classes of fusers
 • Isolation – illustrated with classifiers
 • Projective fusers – illustrated with function estimators
 – Motivated by practical problems: robotics, radiation source detection, embrittlement predictions

• Challenges in Information Fusion
 – Measurements from physically distributed processes exploit physical models and laws
 – Cyber-physical networks combine information from different modalities
Contact

Nageswara (Nagi) S. Rao
Complex Systems
Computer Science and Mathematics Division
(865) 574-7517
raons@ornl.gov