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The need

• Large-scale applications on supercomputers and experimental 
facilities require high-performance networking

– Moving petabyte data sets, collaborative visualization, and computational 
steering 

• Application areas span the disciplinary spectrum: 
high-energy physics, climate, astrophysics, fusion energy, 
genomics, and others

Promising solution

• High bandwidth and agile network capable of 
providing on-demand dedicated channels: 
multiple 
10s Gb/s to 150 Mb/s

• Protocols are simpler for high throughput and 
control channels

Challenges

• In 2003, several technologies needed to be 
(fully) developed

• User/application-driven agile control plane

– Dynamic scheduling and provisioning

– Security—encryption, authentication, 
authorization

• Protocols, middleware, and applications 
optimized for dedicated channels
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UltraScience Net – In a nutshell

Experimental network research testbed

• To support advanced networking and related application technologies for large-scale science projects

Features

• End-to-end guaranteed 
bandwidth channels

• Dynamic, in-advance 
reservation and 
provisioning of 
fractional/full lambdas

• Secure control-plane
for signaling

Peered with ESnet, National Science Foundation’s CHEETAH, and other networks
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• Provided long haul production links for experimentation

– 8000 mile 10 Gbps and 70,000 mile 1 Gbps connections

– Automated scripts for testing over multiple connections

• First advanced reservation and scheduling of dedicated connections

– Showed the problem to be polynomial-time solvable

– Deployed in USN control plane in 2005 – demonstrated at SC2005

• Identified network throughput bottlenecks in dedicated connections 
supercomputers

• Peering of layer-2 and layer-3 networks using VLANS: 

– Coast-to-coast connections over USN, Esnet, and CHEETAH

• Infiniband extensions to thousands of miles

– IB-RDMA throughputs: local 7.6 Gbps: 8600 miles: 7.2 Gbps: SC2008

• 10 Gbps Crypto devices

– TCP performance improved: higher throughput with less #streams

• Cross-calibration of simulations, emulations, and testbed connections

– Regmented regression to extend measurements to other modalities

2004

2005

2007

2008

2009

2010

USN Contributions



5 Managed by UT-Battelle
for the U.S. Department of Energy Rao_UltraSciNet_SC10

InfiniBand over 10 GigE: cross-traffic
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Performance profiles of IB over 10 GigE

Results are almost 
the same as in 

SONET case

Connection length (miles) di 0.2 1400 6600 8600

Throughput (Gbps) – 8M msg 7.5 7.49 7.39 7.36

Std-dev (Mbps) 0.07 0.69 0.00 0.20

DPM (Mbps) DB (di ) 0 0.012 0.017 0.016
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IB throughputs cross traffic

Average throughput for 8M

Cross-traffic
1400
Miles

6600
Miles 

8600 
Miles

0 G 7.49 7.39 7.36

1 G 7.49 7.39 7.36

2 G 3.13 1.38 0.74

3 G 3.25 1.97 1.02

4 G 2.91 1.82 0.96

Below 1Gbps

Competing traffic: UDP streams on WAN at 1,2,3,4 Gbps

• Distance profiles are unaffected for cross-traffic levels of up to 1Gbps

• IB throughput was drastically affected at cross-traffic level of 4 Gbps

• Effect of cross-traffic is more on large message sizes

Cross UDP traffic 
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Testing of 10 Gbps encryption devices:

host1-host2 – plain connections

host3-host4 – encrypted connections
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Sunnyvale

Fiber loop between 10 Gbps devices: 9 Gbps TCP throughput

When connected to E300: 9 Gbps throughput locally

MTU size is modified on E300

IP segment/datagram size set to 8950

chicago loop

cdci-loop

seattle loop

sunnyvale loop

jumbogram1400 byte MTU

TCP profiles: Before and after MTU 

alignment host3-4 encrypted 

connection: File transfer
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Fiber loop between 10 Gbps devices: 9 Gbps TCP throughput

Chicago loop: host3-4 connection achieved 8 Gbps

Sunnyvale loop: host3-4 connection 1.5 times higher throughput

TCP profiles comparison: 

Better throughput with 10 Gbps devices

Compared to plain connections, for encrypted connections we observe that
• High throughput is achieved with fewer streams
• Higher throughput is achieved at longer distances

chicago-loop

seattle loop

sunnyvale loop

sunnyvale loop
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1. Network simulation: s/w
• Tools: OPnet, OMNET, NS-2

2. Network emulation: s/w + h/w
• Routers and switches with link delays emulated using ANUE

3. Fiber loop realizations or USN connections: h/w
• Switches and links are realized as fiber spools or wide-area circuits

Increased 

complexity

Closer to

real network

Implementation Strengths Limitations

Analytical modeling Mathematical models 
and software

Rigorous analysis and 
design

Challenge to achieve 
right abstraction

Simulations
OPNET and OMNINET

Software on 
workstations

Broad what-if 
capability

Limited reflection of 
networks

ANUE emulations Laboratory hardware Closer to actual 
network

High cost; not mobile

Fiber loop or USN 
connections

Laboratory hardware,
fiber spools

Closest to actual 
network

Highest cost; not 
mobile

Simulation or emulation or realization 

WAN connections
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Basic Question:  Predict performance on connection length     not realizable on USN

Example: IB-RDMA or HTCP throughput on 900 mile connection

( )SM d Measurements on OPNET simulated path of distance d

Measurements on USN path distance 

d

( )EM d Measurements on ANUE emulated path of distance d

( )U iM d
id

(.)AM Regression of measurements on

 , ,A S E U

Approach: Under active development

1. Collect  simulation or emulation measurement for

2. Apply differential regression to obtain the estimate

Measurement Regression: for

Differential  Regression: for

, (.) (.) (.)A B A BM M M  

   , , , , ,A S E U B S E U 

,
ˆ ( ) ( ) ( )U C C UM d M d M d 

 ,C S E

simulated/emulated

measurements

point regression

estimate

d

Differential regression method for 

cross-calibration
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Conclusions

• USN infrastructure

– Its architecture has been adopted by LHCnet and Internet2

– It has provided experimental connections to supercomputers

– It has enabled testing: VLAN performance, peering of packet circuit 
switched networks, control plane with advanced reservation, Infiniband
and crypto systems over wide area

• USN continues to play a research role in advanced networking 
capabilities
– Networking technologies for high-performance computers

• Connectivity to supercomputers

– Testing 10 Gbps data transport

• TCP variants and Inifiniband

• Encryption devices

– Cross-calibration with ANUE emulations and OPNET simulations

– Plans to upgrade USN to 40/100 Gbps in 2010
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