Network Offloaded Hierarchical Collectives
Using ConnectX-2’s CORE-Direct

Project members

Noam Bloch Richard L. Graham

Pavel Shamis
Joshua S. Ladd
Gilad Shainer Manjunath Gorentla Venkata

Mellanox Technologies, Inc

Mellanox Technologies, LTD

Computer Science and Mathematics Division
Oak Ridge National Laboratory




Acknowledgments

* U.S. Department of Energy ASCR FASTOS program

* HPC Advisory Council (computer resources)
— www.hpcadvisorycouncil.com



http://www.hpcadvisorycouncil.com/

Outline

* Problems being addressed

* InfiniBand overview

* New InfiniBand capabilities

» Software design for collective operations
* Results



Problems being addressed - collective
operations

« Communication characteristics at scale

* Overlapping computation with communication—true
asynchronous communications

— Goal: Avoid using the CPU for communication processing
 System noise
* Application skew

=» Scalability
* Collective communication performance



Collective communications

- Communication pattern involving multiple processes (in
MPI, all ranks in the communicator are involved)

 Optimized collectives involve a communicator-wide
data-dependent communication pattern

- Data needs to be manipulated at intermediate stages of
a collective operation

* Collective operations limit application scalability

* Collective operations magnify the effects of system
hoise



Scalability of collective operations
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Scalability of collective operations |l
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InfiniBand collective offload - key idea
* Create local description of the communication patterns

 Hand the description to the HCA

» Manage collective communications at the network level
* Poll for collective completion

* Add new support for

— Synchronization primitives (hardware)

e Send Enable task
* Receive Enable task
« Wait task

— Multiple Work Request

A sequence of network tasks
— Management Queue



InfiniBand hardware changes

* Tasks defined in the * New support
current standard — Synchronization primitives
— Send (hardware)
— Receive  Send Enable task
_ Read * Receive Enable task
_ Write — Calc Operations
— Atomic » Wait task
— Multiple Work Request

A sequence of network tasks

» Management Queue



MPI queue design
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Collectives - software layers

OMPI
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Example - 4 process recursive doubling

Step 1

Step 2




4 Process barrier example

Algorithm

Exchange Exchange Exchange Exchange
with proc1  with proc0  with proc 3  with proc 2

Exchange Exchange Exchange Exchange
with proc 2  with proc 3  with proc 0  with proc 1

e

Send to Send to Send to Send to
proc 1 proc O proc 3 proc 2

Wait on recv Wait onrecv Waitonrecv Wait on recv
from 1 from O from 3 from 2

Send to Send to Send to Send to
proc 2 proc 3 proc O proc 1

Waitonrecv Waitonrecv Waitonrecv Waiton recv
from 2 from 3 from O from 1



4 Process barrier example - queue view

Send G

Send to Send to Send to Send to
proc 1 — proc 0 — proc 3 — proc 2 —
enabled enabled enabled enabled

Sendto2—- Sendto3- SendtoO—- Sendtol -
not enabled notenabled notenabled notenabled

e

Recv wait Recv wait Recv wait Recv wait
from 1 from O from 3 from 2

Send enable Send enable Send enable Send enable
1 0 3 2

Recv wait Recv wait Recv wait Recv wait

from 2 from 3 from O from 1




8 Process barrier example - queue

view - no MQ, view at rank 0

QP 1

Send QP 1

QP 2

Wait QP 1
Send QP 2

QP 4

Wait QP 1
Wait QP 2
Send QP 4
Wait QP 4

a “lk B
.



Cheetah Core-DIRECT component
status

 Supported Collectives (blocking and nonblocking)
— Barrier
— Bcast
— AlltoAll
— Allgather
— Fan-in/out

* Offloaded protocols

— Small messages protocol with support for heterogeneous
communication layers

— Zero-Copy offload for large messages



Benchmarks



System setup

* 8 node cluster

* Node architecture
— 3 GHz Intel Xeon
— Dual socket
— Quad core

* Network

— ConnextX-2 HCA
— 36 port QDR switch running prerelease firmware



Barrier Data



Flat barrier algorithm
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Hierarchical barrier algorithm

Host 1 Host 2
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MPI barrier timings
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Barrier timings - blocking vs. nonblocking
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Nonblocking barrier overlap
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Broadcast Data



Broadcast algorithm features

* Reduced memory footprint
— K-nomial tree: (K-1)Log,(N) connections

* Reduced memory overhead

— Memory blocks are shared between multiple communication
layers

— Novel Zero-Copy offload for large messages
» Parallel execution on multiple communication layers
* Support for Blocking and Non-Blocking Broadcast



Zero-Copy Offload Algorithm for large
message broadcast
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Broadcast Overlap — Wait Based

* Percentage of the nonblocking broadcast available for
work as measured with the wait-based test
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Broadcast Overlap - Polling Based

* Percentage of the nonblocking broadcast available for
work as measured with the polling-based test
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Broadcast latency (small messages)

- Small data algorithm broadcast latency as a function of message
size and implementation, and 64 ranks. Message sizes very from
one byte to 32 KB.
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Broadcast latency (large messages)

- Large-data algorithm broadcast latency as a function of message
size and implementation, and 64 ranks. Message sizes very from
32 KB to 16MB
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Summary

 Added hardware support for offloading
collective operations

* Developed MPI-level support for asynchronous
collectives

* Good barrier and broadcast performance

* Good overlap capabilities
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