Network Offloaded Hierarchical Collectives
Using ConnectX-2’s CORE-Direct

Project members

Noam Bloch Richard L. Graham

Pavel Shamis
Joshua S. Ladd
Gilad Shainer Manjunath Gorentla Venkata

Mellanox Technologies, Inc

Mellanox Technologies, LTD

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Acknowledgments

* U.S. Department of Energy ASCR FASTOS program

* HPC Advisory Council (computer resources)
— www.hpcadvisorycouncil.com

http://www.hpcadvisorycouncil.com/

Outline

* Problems being addressed

* InfiniBand overview

* New InfiniBand capabilities

» Software design for collective operations
* Results

Problems being addressed - collective
operations

« Communication characteristics at scale

* Overlapping computation with communication—true
asynchronous communications

— Goal: Avoid using the CPU for communication processing
 System noise
* Application skew

=» Scalability
* Collective communication performance

Collective communications

- Communication pattern involving multiple processes (in
MPI, all ranks in the communicator are involved)

 Optimized collectives involve a communicator-wide
data-dependent communication pattern

- Data needs to be manipulated at intermediate stages of
a collective operation

* Collective operations limit application scalability

* Collective operations magnify the effects of system
hoise

Scalability of collective operations

Ideal Algorithm Impact of System Noise
: : 63'—-—Work
,)) , :) C : (D Reduction -) — D —— ok
:-—'Communication : (O Reduction
: D Use Result :'—" Communication
i |(: Use Result
: :M Noise
. - |
| " -
3 l 3 £
2 l '
| l
' |
1 I i
! i
I [
: — |
0 1 2 3 —
Process Rank 0 1 2 3

Process Rank

Scalability of collective operations |l

Offloaded Algorithm Nonblocking Algorithm
. . 6 Work 6 Work
D D : O Reduction | O Reduction
— - - !
! ~——* Communication I . C icati
l I ommunication
I () Use Result (. C) | () UseResult
[) — |
: W Delegation Agent [Wy Delegation Agent
. I
I e \
3! S I o
= P2 °
[ke [
| | |
— _
| 2 52| ey |
l : \f:(\ i
| %S | |
| s [
0 1 2 3 0 1 2 3
Process Rank Process Rank

l - Communication processing

InfiniBand collective offload - key idea
* Create local description of the communication patterns

 Hand the description to the HCA

» Manage collective communications at the network level
* Poll for collective completion

* Add new support for

— Synchronization primitives (hardware)

e Send Enable task
* Receive Enable task
« Wait task

— Multiple Work Request

A sequence of network tasks
— Management Queue

InfiniBand hardware changes

* Tasks defined in the * New support
current standard — Synchronization primitives
— Send (hardware)
— Receive Send Enable task
_ Read * Receive Enable task
_ Write — Calc Operations
— Atomic » Wait task
— Multiple Work Request

A sequence of network tasks

» Management Queue

MPI queue design

Transport
Layer

Network
Layer

Link Layer

PHY Layer

Consumer

Channel
Adapter

Consumer Transactions,
Cperations, etc.

Consumer

WOEwy WOE y
IBA Cperations
ol ~ — - == === === EEEE
s HHE (BAPackets) | HHE |
Send Rcv |BA Packets Send Rcov
Transport ["~ -TTTTTTTT Transport
| F‘acketReIayI
Packet Packet Packet
| Port I | Portl | Ponl | Port I
Physical Link F hysical Link
(Symbals) (Symbols)

Fabric

Figure 13 IBA Communication Stack

Channel Adapter

Send@
cQr
* > ¢ >
Per@Communicator
Resources@
clectived MQIQX Serviceld
MQE MQR
AllBen
N Qu skl
o g
Smallz Resourcel# Largel redit® \
datal recycling® datal@ QPE

A

Send@ Recvd

Y

Send@ Recv@

\

Send@ Recvd

YT

Send® RecvE

~

Recv@

EZ; K Recv@:gﬁ\ Recv@:gﬂ \ RecleBEf\
Resources(

Collectives - software layers

OMPI

Module Component Architecture
Collective Framework BasiG CollectivVES Eramewornk Subgroup Eramework

MIS=Hierarchical Tuned (pt2pt) IB IB Pt2Pt SM NUMA MUMA IBINEN;
Collectives Comp: Collectives Comp. 0)==10)\D)

MLNX MLNX

OFED OFED

Example - 4 process recursive doubling

Step 1

Step 2

4 Process barrier example

Algorithm

Exchange Exchange Exchange Exchange
with proc1 with proc0 with proc 3 with proc 2

Exchange Exchange Exchange Exchange
with proc 2 with proc 3 with proc 0 with proc 1

e

Send to Send to Send to Send to
proc 1 proc O proc 3 proc 2

Wait on recv Wait onrecv Waitonrecv Wait on recv
from 1 from O from 3 from 2

Send to Send to Send to Send to
proc 2 proc 3 proc O proc 1

Waitonrecv Waitonrecv Waitonrecv Waiton recv
from 2 from 3 from O from 1

4 Process barrier example - queue view

Send G

Send to Send to Send to Send to
proc 1 — proc 0 — proc 3 — proc 2 —
enabled enabled enabled enabled

Sendto2—- Sendto3- SendtoO—- Sendtol -
not enabled notenabled notenabled notenabled

e

Recv wait Recv wait Recv wait Recv wait
from 1 from O from 3 from 2

Send enable Send enable Send enable Send enable
1 0 3 2

Recv wait Recv wait Recv wait Recv wait

from 2 from 3 from O from 1

8 Process barrier example - queue

view - no MQ, view at rank 0

QP 1

Send QP 1

QP 2

Wait QP 1
Send QP 2

QP 4

Wait QP 1
Wait QP 2
Send QP 4
Wait QP 4

a “lk B
.

Cheetah Core-DIRECT component
status

 Supported Collectives (blocking and nonblocking)
— Barrier
— Bcast
— AlltoAll
— Allgather
— Fan-in/out

* Offloaded protocols

— Small messages protocol with support for heterogeneous
communication layers

— Zero-Copy offload for large messages

Benchmarks

System setup

* 8 node cluster

* Node architecture
— 3 GHz Intel Xeon
— Dual socket
— Quad core

* Network

— ConnextX-2 HCA
— 36 port QDR switch running prerelease firmware

Barrier Data

Flat barrier algorithm

Host 1

Inter Host
Communication

Host 2

Step 1

Step 2

JATL

2
P
CPIDGE

Hierarchical barrier algorithm

Host 1 Host 2

2\6

4

Inter Host
Communication

MPI barrier timings

30 MQ-Hierarchical —>¢— ' ' | ' |
MQ*....
PtP o [2] e
PtP — SM hierarchy X

Time Per Barrier Operation (usec)

Number of Processes

Barrier timings - blocking vs. nonblocking

30 Barrier MQ-Hierarchical + ' ' ' '
Barrier MQ ----%:--
NB-Barrier MQ-Hierarchical - o [
NB-Barrier MQ 2

25 - 1

Time Per Barrier Operation (usec)

Number of Processes

Nonblocking barrier overlap

45 T I I T
AT MQ IB Hierarchy ——
w
=]
§ T
©
[(]
o
© 30t
ko
3 Woceereeenen Woeeeenennnn: Hvenereenens ¥
& 25+
[(b]
£
|_
20
15)r\/ 4}(_ >/I\ /l\<]] 1
10 20 30 40 50 60 70 80

Percent of Time In Work Loop

Broadcast Data

Broadcast algorithm features

* Reduced memory footprint
— K-nomial tree: (K-1)Log,(N) connections

* Reduced memory overhead

— Memory blocks are shared between multiple communication
layers

— Novel Zero-Copy offload for large messages
» Parallel execution on multiple communication layers
* Support for Blocking and Non-Blocking Broadcast

Zero-Copy Offload Algorithm for large
message broadcast

Processll ProcessiR

1)RegisterReceive@Memoryf I
Creditf@ P Creditf@ P
2)EINotifyl
Sendp { Send} sender® [Sendp J Sendm
Recvi [Recv} I Recvhl] Recvil
J |
I 3)AVaitnXredit@nessagel
QpPm@ I QP

(" h 9 ™
Send® Send? | Waitd [Waitl | Send® Sendm

N J v

-))/7/ N
Recvi Recvid 4 Recv Recvi

\ J I \ J

4)I3en<]1|ser|]iata

Broadcast Overlap — Wait Based

* Percentage of the nonblocking broadcast available for
work as measured with the wait-based test

100 T T T T I T 1 T

90

8Ofh &

70

0]
% =—g== (Cheetah Offload Bcast Overlap Min
T Cheetah Offload Bcast Overlap Max
o 60 et Cheetah Offload Bcast Overlap Avg §
c & @ Cheetah Host Bcast Overlap Min
d‘f Cheetah Host Bcast Overlap Max
- 50 @i Cheetah Beast Overlap Avg .
o
f_f 40 .
o
>
O 30 -
20 .
10 ' |:|.||In.||l.|.n||:|ll|.||I||.|:|.||I|ru:.l.llllru:|.|||u.||l|.nll|.||I||.|I||.||'||'|{|'||'n'||'|f||H|.ﬂl'lMl‘l'lﬂflmﬂl'l'lll!l'lﬁflmHl'u'llﬂu'lﬁh'ﬂﬂhmﬂl'iHhh\ﬂl‘ﬂﬂﬂﬁhlﬂl\ﬂhh. .
0 | | | | | | | |
0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+0

Message Size (bytes)

Broadcast Overlap - Polling Based

* Percentage of the nonblocking broadcast available for
work as measured with the polling-based test

100
QSI
,|1
2 go'r
8
c
3
élt) =—g=== (Cheetah Offload Bcast Overlap
= 85 |- Cheetah Host Bcast Overlap
o
L,
E) 80
o
75 |-
70 | | | | | | | |
0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+0

Message Size (bytes)

Broadcast latency (small messages)

- Small data algorithm broadcast latency as a function of message
size and implementation, and 64 ranks. Message sizes very from
one byte to 32 KB.

180 T T T T T T

OMPI Cheetah (uma,iboffload)
==tz OMP| Cheetah (socket,uma,iboffload) 9
160 | *+@:r OMPI Cheetah (p2p) R .
OMPI Cheetah (uma,p2p) R
==m=:= OMP| Cheetah (socket,uma,p2p) R
140 L =@ =1 OMPI Default o |
nwen Mvapich-1 1.2rc R
\‘\‘\ N J
120 I~ ‘\‘\‘\ o w ' 1
g I] \‘\‘ ; e “
Q ’ l.l.l.l.l\t\ld -I-:“‘ R L
2 100 jl ‘\‘\Q o et i - i
5 i'! ant e
S ot e
S 80 AR d .
-ES‘ lj ’\,o’ \\\\\\
- x"\“‘\\ “\"““
60 |- o e .
“‘\Q:} ““““ - -"“‘“
o ‘:‘l;:': “““ “Illl“‘--
| ‘.\ RO -.-“"‘]
40 \‘\‘\“\\ ll ‘Illl““‘
. ‘\:i‘ we O\i *‘II‘I““-
\“““ ’ II““‘
20 \:\‘8"“ \"""‘ ‘I‘IIIII“““]
& L -‘Illl"‘-*“
g-‘--l“
0 _ 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000

Message size (bytes)

Broadcast latency (large messages)

- Large-data algorithm broadcast latency as a function of message
size and implementation, and 64 ranks. Message sizes very from
32 KB to 16MB

80000 T T T T T T T T
OMPI Cheetah (uma,iboffload) o
===gt=== OMPI| Cheetah (socket,uma,iboffload) oo
70000 | i@ OMPI Cheetah (p2p) ‘\‘\é‘ i
OMPI Cheetah (uma,p2p) a®
= =m=i= OMP| Cheetah (socket,uma,p2p) ot
i@+ OMPI Default o
e+ Mvapich-1 1.2rct we?
60000 [' R .
o \‘\‘\‘ “'
.
+ » ‘:\‘\‘ ““““
MR \\“
¢ .
5 50000 | ST el -
I\ * “‘ ‘\“ '\" "
8 DR ot o ‘t“
. \s“ “““ "4" os%*
-
~ o N “‘ ‘\“ '\“ ““‘
- S \$\ ot SV o]
> 40000 - .‘\‘ ““““ - “:“”
c ~s¢ R R '\“:“‘
9 s“\‘\‘ ““““ “\"‘““
(4] ‘\“ ‘\“ “G‘:““
-l 30000 ~ \t‘ ”“ “\ “‘]
\‘\‘\: T o :‘t““““
NS S
\‘\‘\: SR ““:‘\’t‘
‘\Q ‘s “\ “‘\““
20000 RN .
o* @ ﬁ“
\ kS
\‘\‘ v“ e“
\‘\‘ \“‘ L g
. ‘\“ '\'
10000 I~ \Q‘ ‘\“ " 1
\:\‘
.
O = | | | | | | | |

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+0
Message size (bytes)

Summary

 Added hardware support for offloading
collective operations

* Developed MPI-level support for asynchronous
collectives

* Good barrier and broadcast performance

* Good overlap capabilities

Publications

« Pavel Shamis, Richard L. Graham, Manjunath Gorentla Venkata, Joshua S. Ladd. “Design and Implementation of
Broadcast Algorithms for Extreme-Scale Systems,” IEEE Cluster 2011, accepted for publication.

« Joshua Ladd, Manjunath Gorentla Venkata, Richard Graham, Pavel Shamis. “Analyzing the Effects of Multicore
Architectures and On-host Communication Characteristics on Collective Communications,” The Seventh
International Workshop on Scheduling and Resource Management for Parallel and Distributed Systems
(SRMPDS 2011), accepted for publication.

» Manjunath Gorentla Venkata, Richard Graham, Joshua Ladd, Pavel Shamis, Ishai Rabinovitz, Vasily Filipov and
Gilad Shainer. “ConnectX-2 CORE-Direct Enabled Asynchronous Broadcast Collective Communications,” The
1st Workshop on Communication Architecture for Scalable Systems (CASS2011), May 2011.

 Richard Graham, Manjunath Gorentla Venkata, Joshua Ladd, Pavel Shamis, Ishai Rabinovitz, Vasily Filipov and
Gilad Shainer. “Cheetah: A Framework for Scalable Hierarchical Collective Operations,” The 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid2011), May 2011.

 Ishai Rabinovitz, Pavel Shamis, Richard L. Graham, Noam Bloch, Gilad Shainer. “Network Offloaded Hierarchical
Collectives Using ConnectX-2's CORE-Direct capabilities,” EuroMP1 2010 - Stuttgart, Germany, September 2010

* Richard L. Graham, Steve Poole, Pavel Shamis, Gil Bloch, Noam Bloch, Hillel Chap- man, Michael Kagan, Ariel
Shahar, Ishai Rabinovitz, Gilad Shainer. “ConnectX-2 InfiniBand Management Queues: First investigation of the
new support for network offloaded collective operations,” The 10th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (CCGrid2010), May 2010

* Richard L. Graham, Steve Poole, Pavel Shamis, Gil Bloch, Noam Bloch, Hillel Chap- man, Michael Kagan, Ariel
Shahar, Ishai Rabinovitz, Gilad Shainer. “Overlapping computation and communication: Barrier algorithms and
ConnectX-2 CORE-Direct capabilities,” The 10th Workshop on Communication Architecture for Clusters (CAC
2010), April 2010

Contact

Richard L. Graham

Application Performance Tools

Computer Science and Mathematics Division
(865) 356-3469

rigraham@ornl.gov

