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Tradeoff between Performance and 

Programmability in Many-Core 

Processors 

• GPU provides more computing power but worse 
programmability than CPU. 

• GPU architectures are optimized for stream computations. 

• General-Purpose GPUs (GPGPUs) provide better 
programmability for general applications. 
– CUDA programming model is more user-friendly than previous 

approaches, but still complex and error-prone. 

(a) CPU (b) GPU Courtesy: NVIDIA 
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OpenMPC (OpenMP extended for CUDA) 

• OpenMPC = OpenMP + a new set of directives and 
environment variables for CUDA 

• OpenMPC provides 

– A high level abstraction of the CUDA programming model 
(Programmability) 

– An easy tuning environment to generate CUDA programs in 
many optimization variants (Tunability) 
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OpenMPC Approach 

• Use OpenMP for easier programming on CUDA-based 
GPGPUs. 

• Provide various compile-time optimizations for 
performance. 

• Extend OpenMP to allow fine-grained control of CUDA-
related parameters and optimizations. 
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OpenMPC: Directive Extension and 

Environment Variables 

• OpenMPC Directive Format 

#pragma cuda gpurun [clause [,] clause]…] 

#pragma cuda cpurun [clause [,] clause]…] 

#pragma cuda nogpurun 

#pragma cuda ainfo procname(pname) kernelid(kID) 

 

• OpenMPC Environment Variables 

– Control the program-level behavior of various optimizations 
or execution configurations for an output CUDA program. 
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OpenMPC Code Example 

#pragma omp parallel shared(firstcol, lastcol, x, z) private(j) reduction(+: norm_temp11, norm_temp12) 

#pragma cuda ainfo kernelid(1) procname(main) 

#pragma cuda gpurun noc2gmemtr(x, z)  nocudamalloc(x, z) nocudafree(firstcol, lastcol, x, z)  

#pragma cuda gpurun nog2cmemtr(firstcol, lastcol, x, z) sharedRO(firstcol, lastcol) texture(z)  

{ 

    #pragma omp for private(j) nowait 

    for (j=1; j<=((lastcol-firstcol)+1); j ++ ) { 

        norm_temp11=(norm_temp11+(x[j]*z[j])); 

        norm_temp12=(norm_temp12+(z[j]*z[j])); 

    } 

} 

OpenMP directives: 

inserted by a programmer 

OpenMPC directives: 

inserted by the OpenMPC 

compiler, but the programmer 

can alter them for fine tuning. 
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OpenMPC Compilation System 

• Overall Compilation Flow 
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For automatic tuning, additional passes are invoked between CUDA Optimizer 

and O2G Translator, marked as (A) in the figure. 
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OpenMPC Tuning Framework 
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Programmers can 

replace the tuning 

engine with any 

custom engine. 

Exhaustive search was used in 

the prototype tuning system. 
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Performance of OpenMP Programs 

on CUDA 

•Speedups are over serial on the CPU, when the largest available input data were used.  

•Experimental Platform: CPU: Dual-Core AMD Opteron at 3 GHz       GPU: NVIDIA Quadro FX 5600 with 16 multiprocessors at 1.35GHz 

Similar Rewrite Better Rewrite&Better Worse 
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Translator 

Input 

Performance Improvement 

over All-Opt Versions 

Relative Performance over 

Manual Versions 

MIN MAX AVG MIN MAX AVG 

Orig. 

OpenMP 
1 4.23 1.19 

0.02 

(0.03) 

1.92 

(1.92) 

0.5 

(0.58) 

Mod. 

OpenMP 
1 7.71 1.24 

0.02 

(0.33) 

2.68 

(2.68) 

0.75 

(0.92) 

• OpenMPC Performance Summary 

 

 

 

 

 

 

 

• Optimization Search Space Reduction by the Built-in Pruner 

– 98.7% on average for program-level tuning 

Overall Tuning Performance 

In A(B) format, B refers the performance when the results of LUD are excluded. 
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