
Presented by

OpenMPC: OpenMP

Extended for CUDA

Seyong Lee

Jeffrey Vetter

Rudolf Eigenmann

Future Technologies Group

Oak Ridge National Laboratory

School of ECE, Purdue University

2 Managed by UT-Battelle
 for the U.S. Department of Energy

Tradeoff between Performance and

Programmability in Many-Core

Processors

• GPU provides more computing power but worse
programmability than CPU.

• GPU architectures are optimized for stream computations.

• General-Purpose GPUs (GPGPUs) provide better
programmability for general applications.
– CUDA programming model is more user-friendly than previous

approaches, but still complex and error-prone.

(a) CPU (b) GPU Courtesy: NVIDIA

3 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenMPC (OpenMP extended for CUDA)

• OpenMPC = OpenMP + a new set of directives and
environment variables for CUDA

• OpenMPC provides

– A high level abstraction of the CUDA programming model
(Programmability)

– An easy tuning environment to generate CUDA programs in
many optimization variants (Tunability)

4 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenMPC Approach

• Use OpenMP for easier programming on CUDA-based
GPGPUs.

• Provide various compile-time optimizations for
performance.

• Extend OpenMP to allow fine-grained control of CUDA-
related parameters and optimizations.

5 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenMPC: Directive Extension and

Environment Variables

• OpenMPC Directive Format

#pragma cuda gpurun [clause [,] clause]…]

#pragma cuda cpurun [clause [,] clause]…]

#pragma cuda nogpurun

#pragma cuda ainfo procname(pname) kernelid(kID)

• OpenMPC Environment Variables

– Control the program-level behavior of various optimizations
or execution configurations for an output CUDA program.

6 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenMPC Code Example

#pragma omp parallel shared(firstcol, lastcol, x, z) private(j) reduction(+: norm_temp11, norm_temp12)

#pragma cuda ainfo kernelid(1) procname(main)

#pragma cuda gpurun noc2gmemtr(x, z) nocudamalloc(x, z) nocudafree(firstcol, lastcol, x, z)

#pragma cuda gpurun nog2cmemtr(firstcol, lastcol, x, z) sharedRO(firstcol, lastcol) texture(z)

{

 #pragma omp for private(j) nowait

 for (j=1; j<=((lastcol-firstcol)+1); j ++) {

 norm_temp11=(norm_temp11+(x[j]*z[j]));

 norm_temp12=(norm_temp12+(z[j]*z[j]));

 }

}

OpenMP directives:

inserted by a programmer

OpenMPC directives:

inserted by the OpenMPC

compiler, but the programmer

can alter them for fine tuning.

7 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenMPC Compilation System

• Overall Compilation Flow

CUDA

Optimizer

O2G

Translator

OpenMP

Stream

Optimizer

OpenMPC

Directive

Handler

Kernel

Splitter

OpenMP

Analyzer

Cetus

Parser

Input

OpenMP/

OpenMPC

Program

Output

CUDA

Program

User Directive

File
(A)

For automatic tuning, additional passes are invoked between CUDA Optimizer

and O2G Translator, marked as (A) in the figure.

8 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenMPC Tuning Framework

Tuning Configuration

Generator

Optimization Space

Navigator

Search Space Pruner

O2G Translator

OpenMPC code (Output

IR from CUDA Optimizer)

Tunable

parameters

Tuning

configuration

CUDA code

Compilation,

Execution, and

Measurement

Performance

Optimization

space setup

 Tuning Engine

Cetus

IR

(A)

Programmers can

replace the tuning

engine with any

custom engine.

Exhaustive search was used in

the prototype tuning system.

9 Managed by UT-Battelle
 for the U.S. Department of Energy

Performance of OpenMP Programs

on CUDA

•Speedups are over serial on the CPU, when the largest available input data were used.

•Experimental Platform: CPU: Dual-Core AMD Opteron at 3 GHz GPU: NVIDIA Quadro FX 5600 with 16 multiprocessors at 1.35GHz

Similar Rewrite Better Rewrite&Better Worse

10 Managed by UT-Battelle
 for the U.S. Department of Energy

Translator

Input

Performance Improvement

over All-Opt Versions

Relative Performance over

Manual Versions

MIN MAX AVG MIN MAX AVG

Orig.

OpenMP
1 4.23 1.19

0.02

(0.03)

1.92

(1.92)

0.5

(0.58)

Mod.

OpenMP
1 7.71 1.24

0.02

(0.33)

2.68

(2.68)

0.75

(0.92)

• OpenMPC Performance Summary

• Optimization Search Space Reduction by the Built-in Pruner

– 98.7% on average for program-level tuning

Overall Tuning Performance

In A(B) format, B refers the performance when the results of LUD are excluded.

11 Managed by UT-Battelle
 for the U.S. Department of Energy

References

Seyong Lee and Rudolf Eigenmann, OpenMPC: Extended OpenMP Programming and Tuning
for GPUs, SC10: Proceedings of the 2010 ACM/IEEE conference on Supercomputing (Best
Student Paper Award), November 2010

Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann, OpenMP to GPGPU: A Compiler
Framework for Automatic Translation and Optimization, Symposium on Principles and Practice of
Parallel Programming (PPoPP09), February 2009

12 Managed by UT-Battelle
 for the U.S. Department of Energy
12 Managed by UT-Battelle
 for the U.S. Department of Energy

Contacts

Seyong Lee

Future Technologies Group
Computer Science and Mathematics Division
Oak Ridge National Laboratory
(865) 576-3869
lees2@ornl.gov

Rudolf Eigenmann

School of ECE, Purdue University
eigenman@purdue.edu

