Performance Engineering
Research Institute (PERI)

Presented by

Philip C. Roth

Future Technologies Group
Computer Science and Mathematics
Division




Performance engineering: enabling
petascale science

Petascale computing is about delivering

performance to scientists

Maximizing performance PERI addresses this challenge

Is getting harder IBM BG/P at ANL in three ways
 Systems are more »  Model and predict

complicated application
— 0 (100 K) performance %
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analysis and tuning

* Investigate novel strategies for
automatic performance tuning

is more complicated

— Multidisciplinary
and multiscale



http://www.anl.gov/Media_Center/ArgonneNow/Spring_2008/breakthroughs.html
http://www.anl.gov/Media_Center/ArgonneNow/Spring_2008/breakthroughs.html
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Performance Engineering
Research Institute (PERI)

Informing Office of Science

10 year procurement plan

Providing
near-term
impact

on the
performance
optimization
of SciDAC
applications

Informing long-
term automated
tuning efforts
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Evaluating architectures
and algorithms in
preparation for move

to petascale

Providing guidance
in automatic tuning

Long-term research

goal to improve

performance portability

Relieving the performance
optimization burden
from scientific programmers
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Engaging SciDAC software developers

Application survey Application liaisons

* Long-term partnerships

* Collect data on
SciDAC-2 and INCITE
code characteristics and
performance
requirements

* Use data to determine
PERI engagement
activities and to direct
PERI research

http:/licl.cs.utk.edu/peri/

Optimizing

kernels/

Optimizing PFLOTRAN
Jacobian initialization: using
Morton space-filling curve to
order initialization reduces L3
cache misses by 26%, TLB
misses by 34% [source:
Marin, ORNL]

* Focus on DOE’s highest

between PERI researchers priorities: SciDAC-2,
and scientific code teams INCITE, JOULE

* Currently working actively * Currently building models

with several application

teams
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to estimate performance
at scale and on new
architectures

Weak Scaling Graph for XGC1
Cray XT5 (jaguarpf), 900K ptlithread, Full-f simulation
12 cores per node, 2 MPI processes per node

XGC1 performance on 3mm ITER grid
Cray XT5 (jaguarpf), 300K and 900K ptl/core, Full-f simulation

—_— SDOKI particleslcoré
—=— 300K particles/core

Maximizing
scientific
throughput _
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[source: Worley, ORNL] ‘ _



Performance modeling

Modeling is critical for automation

of performance tuning

Recent progress

* Guidance to the developer * Trace extrapolation techniques to enable
— New algorithms, systems, etc. performance prediction on larger systems
* Need to know where to focus effort * HPCTOOIklt, PAPI, and PerfTrack extended to

better support performance modeling

» Modeling Assertions extended to support
performance predictions of workloads
containing I/O activity

J * Improved characterization of memory
performance in multicore processors

Need to know when we are done tuning
Predictions for new or hypothetical systems

| Metric Extrapolation > ‘ |
PMaC Cache Simulator PMaC Cache Simulator

] ) Performance Model of 5
Using PMaC Synthetic App. on Blue Waters

streams from Address —
stream Profiles || Trace files || Projections for
(PSnAPSs) to predict N N FLASH performance

performance on future on several future
extreme-scale systems Performance model systems
simulation [source: Snavely, SDSC]

<L

Modeling efforts contribute to procurements

and other activities beyond PERI automatic tuning



PERI performance modelmg at ORNL
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Graphical user interface for discrete-event
simulation of small Cray XT-like system with
3D torus interconnection network

[source: Roth, ORNL]

.L T Cross-Architecture

Performance Evaluation ;

- Design of Machine Independent
- Application Performance Modeling

- Infrastructure (MIAMI) toolkit for
producmg scalable, cross-architecture
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Automatic performance tuning of
scientific code

Long-term goals for PERI

 Obtain hand-tuned performance from automatically generated
code for scientific applications

— General loop nests
— Key application kernels

 Reduce the performance portability challenge facing
computational scientists

— Adapt quickly to new architectures

* Integrate compiler-based and empirical search tools into a
framework accessible to application developers

 Run-time adaptation of performance-critical parameters



Automatic tuning workflow

2: Semantic
analysis

3: Transformation

Source code

L
Triage J
v
Analysis J
\

Transformations J
A

. : Domain-specific
4: Code : Code generation Eedelnena aon
generation ¥
5: Code selection Code S:|e°t'°" |

T [ External software ]
Application assembly

6: Assembly E i Run-time performance

Training Production data Run-time
runs - execution adaptation

‘Esistent datab@

7: Training runs

8: Run-time
adaptation

[source: Norris, ANL]
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Automatic tuning examples

Trisolve Optimization (with gnu) Trisolve Optimization (with cray)

'timing_gnu_exhaustive’ ‘timing_cray_exhaustive’

PFLOTRAN PETSc
trisolve on 4K Jaguar "™
XT5 nodes

timing
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Outlined trisolve routine, used CHILL (Utah) and Active Harmony (Maryland)
to identify algorithm parameters and compiler that yield best performance
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Generated and evaluated different optimizations that would have been
prohibitively time consuming for a programmer to explore manually

[source: Hall, University of Utah and
Hollingsworth, University of Maryland]
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