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Problem space: HPC storage crisis

- Data checkpointing, staging, and offloading are all
affected by data unavailability and I/O bandwidth
bottleneck issues

— Checkpointing terabytes of data to a traditional file system
results in an 1/O bottleneck

— Compute time wasted on staging at the beginning of the job
— Early staging and late offloading waste scratch space

— Delayed offloading renders result data vulnerable to purging
— Upshot

* Increased turnaround time, checkpoint bottleneck

* Increased job wait times due to staging/offloading and storage
delays/errors

 Poor end-user data delivery options



Stdchk: An aggregate SSD/memory-
based checkpoint storage system
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* Application writes to the mount point translated into striping of chunks across a stripe width
of benefactors

— Parallel I/O across distributed SSD or memory



Stdchk (cont’d)

* Features
— Draining of checkpoint images to a parallel file system
— Striping policies factor in SSD locality (i.e., preference to node-local SSD)
— Incremental checkpointing and pruning of checkpoint files
» Compare chunk hashes from two successive intervals
* Initial experiments suggest a 10-25% reduction in size for BLCR checkpoints
» Purge images from previous interval once the current image is safely stored
* File system is unable to perform such optimizations

— A multitiered storage of aggregate memory and aggregate SSD layers

— Applications can also mmap() into the aggregate SSD storage to perform
out-of-core computations



Checkpoint throughput
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Scratch as cache
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Addresses many of the problems of disjoint management!




Just In Time (JIT) staging
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Eager offloading of resuit data
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- Eager offloading features:

— Reconcile offload constraint: before center purge and by the user-specified
deadline: T 0.4 < Min(Dpurge, Jgia)

— Use replication and erasure coding of chunks for redundancy
— Integration with PBS, NWS, and Bittorrent



Nodes for overlay
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Results:
Adapting to dynamic network behavior
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