Robust Storage Management in the
Machine Room and Beyond

Presented by
Sudharshan Vazhkudai

Computer Science Research Group
Computer Science and Mathematics Division

In collaboration with

Virginia Tech: Ali Butt, Henry Monti, Min Li

North Carolina State University: Xiaosong Ma, Fei Meng
ORNL: Chao Wang, Youngjae Kim, Christian Engelmann

Problem space: HPC storage crisis

- Data checkpointing, staging, and offloading are all
affected by data unavailability and I/O bandwidth
bottleneck issues

— Checkpointing terabytes of data to a traditional file system
results in an 1/O bottleneck

— Compute time wasted on staging at the beginning of the job
— Early staging and late offloading waste scratch space

— Delayed offloading renders result data vulnerable to purging
— Upshot

* Increased turnaround time, checkpoint bottleneck

* Increased job wait times due to staging/offloading and storage
delays/errors

 Poor end-user data delivery options

Stdchk: An aggregate SSD/memory-
based checkpoint storage system

« Aggregates storage space from

Compute Nodes / Benefactors

mpute node-local SSD/memory to \ . o el

o e ate |

present a collective, intermediate oo

checkpoint storage or a staging ground

— Job’s own allocated nodes can 000 e FeloX 1 ,«"(jb‘:__’a’
contribute storage space Qo0e QO00e 00Q0e ‘k\
| Main
. Ci M

- Transparent FS interface to the storage .

using FUSE (e.g., /AggregateSSDstore)
- Benefactor process contributes SSD o Wil

space or memory buffers to a manager — — 88 88
- Manager maintains metadata on l'l Ill Ill

. . Al SSD S
benefactor status, contributions and Shared File Systems N s

chunk to benefactor mapping

* Application writes to the mount point translated into striping of chunks across a stripe width
of benefactors

— Parallel I/O across distributed SSD or memory

Stdchk (cont’d)

* Features
— Draining of checkpoint images to a parallel file system
— Striping policies factor in SSD locality (i.e., preference to node-local SSD)
— Incremental checkpointing and pruning of checkpoint files
» Compare chunk hashes from two successive intervals
* Initial experiments suggest a 10-25% reduction in size for BLCR checkpoints
» Purge images from previous interval once the current image is safely stored
* File system is unable to perform such optimizations

— A multitiered storage of aggregate memory and aggregate SSD layers

— Applications can also mmap() into the aggregate SSD storage to perform
out-of-core computations

Checkpoint throughput

__ 50000 |
* Results % 40000 |
— Up to 1800 cores checkpointing B 56600 1
0.25 GB each ~ 0.5 TB overall S .
= 0000 t,
— Aggregate SSD Store N
= 10000 .]
- 32 GB each N I Triple Bulter@ey e
* Ramdisk SSD emulator ~ 175 MB/s 0 200 400 600 800 10001200140016001800
- Peak aggregate SSD throughput of Number of Compute Cores
45 GB/s | | | "Triple Buffer(300) — '
__ 50000 t SSD e
— Aggregate Memory Store C
= 40000 r
* 600 benefactors with 1 GB each =
» 300 benefactors with 1 GB shows & °°|
the effect of draining to PFS E 20000 |
 Peak aggregate memory throughput £ 5000 |
of 56 GB/s
0

0 200 400 600 800 10001200140016001800
Number of Compute Cores

Scratch as cache

° GIobaIIy Manage User submits Cache manager
the scratch cache instrumented job

script ——
« Data movement is
performed using cache Hints

{):oﬂglatlon and eviction Cache Ops

 Users cannot arbitrarily
move data ‘

A __|

* Input and output data are ‘—l -~ > | —

not retained beyond the [F |
lifetime of the application | AN 4

Population: JIT stagin
run P ging Eviction

> \ Retention:

Evict(n)

P

Addresses many of the problems of disjoint management!

Just In Time (JIT) staging

HPC Center

T queuew ‘

'_ - v T " Batch queue
.) e
LA S ' prediction

Enduser -f ' Job wait
location Y BT N 1 . O o time estimate

1 AT o ‘

! > 55 o g, "

N / 1D .7 e Data staging

Remove archive ;< Seela- Dire?t s Minimize time spent by
(e.g., HPSS) transfer input data of queued jobs
e Internet database '

(e.g., NCBI, SDSS)
Y

- Staging constraints
- MaX(Tj) s TJobStartup
— Exposure window of each input dataset, E,; = T ;ps¢aryp — Max(T;); E,,
— The closer E,, is to 0, the better

= Sum(E,)

_‘4‘1"/:F ""‘ _/_

T T T
Joad S J

Eager offloading of resuit data

Site C
Site B

HPC Center ' il

Compute Nodes
| o l Ilﬁodes I

Job Output Data
iJob SLA

Data Offload

Job Input Data

v

Offload result data by a
specified deadline to
ensure continuity in job
workflow
> Enduser
Offload result data by a specified Location

deadline to avoid purging

Center’s Purge
Deadline

- Eager offloading features:

— Reconcile offload constraint: before center purge and by the user-specified
deadline: T 0.4 < Min(Dpurge, Jgia)

— Use replication and erasure coding of chunks for redundancy
— Integration with PBS, NWS, and Bittorrent

Nodes for overlay

Eager
Offl o-ad I n g y m’;r?seer ‘ SI|_.A
architecture g sl

NWS
Result-data * n?;‘:gggr

Center SLA

ErasuTe lransfer -
‘ dul
coding - LRJLELS L
-

Results:
Adapting to dynamic network behavior

25 | | A staged offload is
capable of adapting
to bandwidth
changes or failures

SLA is 600 seconds

1
|
os ! | ' Transferring 2.1 GB file

Available bandwidth at each node

1 51 101 131 201 231 301 351 401 451 501 551
Time 10 s direct T Time 150 s

bandwidth reduced node bandwidth Time 250 s
by 1110 drops to 1MB/s node fails

Time (s)

Contact

Sudharshan Vazhkudai

Computer Science Research Group
Computer Science and Mathematics Division

(865) 576-5547
vazhkudaiss@ornl.gov

http:/lwww.csm.ornl.gov/~vazhkuda/Storage.htmi

