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Screening Reduces
Breast Cancer Mortality

Mammography is responsible for 50% of this decrease

24%
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Sensitivity of Film Mammography is 52%
Sensitivity of Digital Mammography is 55%



Overview

• In every hospital and every imaging clinic
there is a wealth of information being
stored in the form of images

• Text reports are key
• Approach from computer-aided diagnosis

(CAD) viewpoint
• Great potential to improve radiologists’

performance in interpreting medical
images



Computer-Aided Diagnosis  (CAD)

• The goal of CAD is to aid radiologists so
as to:
– Reduce the number of observation errors

» Overlook cancers (FN)
– Reduce the number of interpretation errors

» Calling cancers benign (or normal) (FN)
» Calling benign lesions cancer (FP)

– Reduce variability between radiologists



Acronyms

• Computer-aided detection (CADe)
– computer detection of abnormalities

• Computer-aided diagnosis (CADx)
– computer classification of a lesion (e.g.,

benign vs malignant)

• Computer-aided diagnosis (CAD)
– describes the whole field (CADe and CADx)



Why is CAD Needed ?

• A radiological diagnosis is based on
subjective judgment
– miss cancers
– over diagnosis
– variation in diagnosis

» Intra- and inter-observer

• Workload/Productivity issues
– Image datasets are getting bigger
– Number of cases to read is getting bigger
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Computer detected

Screening Mammogram



Radiologists’ Variation in
Screening Mammography

Courtesy:
RA Schmidt, 
GM Newstead,
Univ. of Chicago
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Diagnostic
Mammogram



Diagnostic Mammography
Masses
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Diagnostic Mammography
Calcifications
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Computers vs Humans
Computers Humans

   Number crunching

   Complex problems

   Consistency

Interpret text

 Merge complementary information 

Ignore bad information



Computer v Humans

May 1997:   Deep Blue 3.5  Kasparov 2.5
Dec. 2006:  Deep Fritz 4   Valdimir Kramnik 2



Complex Problems

• Humans are not good at complex tasks





More Complex

Human are Not Good at
Complex Tasks

                        Satisfaction ratings for 6 tasks

Conscious Unconscious



Wu et al. Radiology 1993
Mammograms with Benign

and Malignant Lesions

Radiologist Extracts 43
Features/Descriptors

Artificial Neural Network Radiologist Probability of
Malignancy

Computer Probability of
Malignancy



Computers Better than Radiologist
in Assimilating Radiographic Data



Consistency

• Humans are inconsistent



Radiologists’ Variation in
Screening Mammography
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Approach (so far)

• CADe
– Analysis of single images
– Some work on multiple views

• CADx
– Analysis of images from multiple modalities

» Mammography
» Ultrasound
» MRI

– How to merge analyses?



State-of-the-Art (so far)

• CADe
– Not as good as radiologists

» Sensitivity is comparable
» Specificity is poor

• CADx
– As good or better than radiologists
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Computer v Radiologists

Computer

Radiologists
(film only)
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Why is Automated Detection
Difficult

• Finding cancer in a mammogram is easy!
– Difficulty in doing so with few false detections

• Mammograms are 2D images of a 3D
breast
– Superposition of normal breast tissue

» Masks cancers
» Normal tissues mimic cancer



Computers vs Humans
Computers Humans

   Number crunching

   Complex problems

   Consistency

Interpret text   

 Merge complementary information   

Ignore bad information               



Merge complementary information
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Ignore Bad Information



Why is Automated Classification
Successful

• Humans are bad at complex problems



CADe as an Aid

• Can improve radiologists’ ability to detect
cancers

• Radiologists can dismiss most computer
false detections

• Radiologists ignore many computer TP
– Better interfaces are being developed



CADx as an Aid

• CADx can improve radiologists’ ability to
classify breast lesions

• Radiologists do not derive maximum
benefit possible

• Better interface is needed



Classification of Microcalcifications
(Jiang et al. Academic Radiology, 1999)
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60%

CAD
Reading



Reference Library

• Should contain a large spectrum of cases
– Normals
– Abnormals
– False positives
– False negatives

• Creating a reference library is difficult and
time consuming



Radiologists’ Variation in
Screening Mammography
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Clinical Cases

Clinical Readings

Gur et al. (Radiology 2008)

Cases Read 
by Rad 1

Cases Read 
by Rad 9

Clinical
Interpretation

Reader Study
Interpretation

...
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Reader Study Laboratory Effect by
Gur et al. (Radiology 2008)

• Radiologists did better on cases that they
read clinically than cases that were read
clinically by other radiologists

• Different radiologists have certain types of
cancers that they are good at detecting
other types that they are not good at
detecting



Personalized CAD

• Gur results imply that personalized CAD is
needed

• Need a unique database for each
radiologist

• Difficult to create



One Approach

• Data mining
• Use existing clinical PACS
• Search for sample cases

– Cancers, benign lesions, recalled normal
cases (FP), missed cancers (FN)

• Text is key



Why is it Necessary to Interpret
Text and Images

• Images are just a matrix of numbers
– Limited value

• Radiologists and pathologists give
context and meaning to those numbers
– Indicate normal cases and abnormal cases
– Can infer TP, FP, FN, TN



Interpreting Text

• Finding cancer in mammogram (without
too many false detections) is difficult
– complex target, complex background
– Data are noisy

• Interpreting text less complex
– Finite number of combination of words
– No background



Interpreting Text

• Automated lesion detection ---> CADe
• Automated text interpretation ---> standalone

• Requirements for a standalone system is very
high

• Radiology/pathology reports are complex and
highly individualized



Summary

• The role of computers in medical imaging
is increasing

• CAD schemes will be personalized
• Need to data mine existing archives for

images and associated text
• Computers will play an increasing

important role in radiologists’ daily
workload
– Relieving mundane tasks (e.g., screening)
– Provide assistance for more complex tasks


