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ABSTRACT

We analyze the nonlinear tool-part dynamics during turning of stainless steel in the
nonchatter and chatter regimes, toward the ultimate objective of chatter control.  Our previous
work in ORNL/TM-13157 [1] analyzed tool acceleration in three dimensions at four spindle
speeds.  In the present work, we analyze the machining power and obtain nonlinear measures of
this power.  We also calculate the cycle-to-cycle energy for the turning process.  Return maps for
power cycle times do not reveal fixed points or (un)stable manifolds.  Energy return maps do
display stable and unstable directions (manifolds) to and from an unstable period-1 orbit, which
is the dominant periodicity.  Both nonchatter and chatter dynamics have the unusual feature of
arriving at the unstable period-1 fixed point and departing from that fixed point of the energy
return map in a single step.  This unusual feature makes chaos “maintenance,” based on the well-
known Ott–Grebogi–Yorke scheme, a very difficult option for chatter suppression.  Alternative
control schemes, such as synchronization of the tool-part motion to prerecorded nonchatter
dynamics or dynamically damping the period-1 motion, are briefly discussed.
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1.  INTRODUCTION

Advanced machining requires faster material removal, which frequently causes poor part
quality due to irregular, uncontrolled tool-part dynamics.  For example, tool chatter results in
nicks, gouges, rough surface finish, and more rapid tool wear.  Such features are unacceptable
from the standpoint of quality assurance and economic efficiency.  This report studies theoretical
prospects for chaos control of tool chatter to (i) provide consistently high part quality, (ii) enable
faster material removal, (iii) reduce waste, and (iv) improve overall efficiency.

Machine tool analysis has been developed [1–28] in the framework of classical nonlinear
dynamics.  One early work [23] described cutting forces during chatter as “very complex” and
“very far from sinusoidal.”  Tlusty [12, 18, 20] published extensive experimental stability dia-
grams for turning, milling, boring, hobbing, and planing showing chatter when the machining
parameter(s) occur in the unstable region.  Qu et al. [16] obtained various nonlinear measures of
vibration data to diagnose dynamics of rotating machinery (turbogenerator and compressor). 
Bukkapatnam et al. [3] recently analyzed data from lathe cutting and found low-dimensional,
chaotic features.  In our previous work [1], we analyzed experimental dynamics during turning of
stainless steel.  We found that nonchatter cutting occurred at low-spindle speeds with multiple
periodicities, low-acceleration amplitude, and strongly chaotic features.  Chatter occurred at
higher spindle speeds with high-acceleration amplitude, low complexity, weak chaotic features,
and strong periodic dynamics.  The transition from nonchatter to chatter cutting is dominated by
motion along the axis of the cutting tool.

A simple, one-dimensional model for machine tool dynamics is a damped, driven, oscillator
in the form of a delayed ordinary differential equation for the chip thickness (y) vs time (t):

A d2y/dt2 + B dy/dt + Cy = D[y(t-T) - y(t)] . (1.1)

The left-hand side of Eq. 1.1 describes tool acceleration (first term), velocity-dependent damping
(second term), and tool force against the workpiece (third term).  The right-hand side (RHS)
accounts for the force from “regenerative chatter,” which involves tool motion, y(t-T), during the
previous cut that produces an undulated surface from which the present cut, y(t), removes a chip.
The RHS of Eq. 1.1 is interpreted as zero for a negative time-delay difference and corresponds to
the tool losing contact with the workpiece when chatter amplitude is above a critical amplitude
[14].  Parameters (A, B, C, D) depend on the operation, geometry, part material, etc.  The lag (T)
is the time between successive cutting cycles (e.g., time per revolution in a turning operation).

The stability regimes of Eq.1.1 were analyzed by Stépán [17] and Chiriacescu [4]. 
Regenerative chatter models (e.g., Ref. 4) predict one (or more) instability region(s) in a phase
space of cutting width vs rotation speed (S) for turning, tool spring constant vs S for milling,
and feed rate vs S for drilling.  This analysis also predicts one (or more) chatter regimes as S
and feed rate increase.  Stépán also discussed Tobias’ improvement [21] to the model for
dynamic damping by a modification to the driving force on the tool for turning, milling, and
drilling.  The improved model gave greater chatter stability at low-cutting speed in accord with
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experiments.  Stépán introduced a further improvement to the model with an additional (short)
regeneration time as the chip moves over the tool cutting edge.  This process distributes the force
along the tool-chip interface, resulting in an integro-differential equation for the distributed time
delay.  That model predicted greater chatter stability at high-cutting speeds in accord with
experiments.  Jemielniak and Widota [10] used a linear model of random disturbances due to the
unpredictability of chip removal, resulting in amplitude modulation of the tool motion.  Moon
[15] included a velocity-dependent friction and found loss of stability with increasing depth of
cut, leading to chatter as a quasi-periodic tool motion. 

Two-dimensional models for regenerative chatter involve cutting direction (x) and a cutting
depth (y).  Tool-workpiece contact causes mode coupling between the independent directions of
motion, each with different frequencies, amplitudes, and phases.  The workpiece imparts energy
to the tool during one part of the cycle, and the tool gives energy to the chip and workpiece dur-
ing another portion of the oscillation.  Vibration amplitude grows if the net energy into the tool
exceeds dissipative losses, thus producing unstable cutting.  If friction and damping losses
exceed the net energy into the tool, then the oscillation cannot grow, resulting in stable cutting. 
The “velocity component principle” is energy transfer due to any time-varying phase shift be-
tween chip thickness and cutting force in the y- and z-(feed) directions.  Early two-dimensional
modeling by Tlusty and Ismail [19] found that the tool can lose contact with the workpiece at
large chatter amplitude, thus improving chatter stability for turning and milling.  The nonlinear
delayed differential equation (DDE) model of Wu and Liu [25] included fluctuations in the mean
friction coefficient due to chip removal, and yielded results that are consistent with experimental
chatter dynamics [26].  Berger et al. [2] used the model of Ref. 25 and found chaotic dynamics
for certain parameter regimes, with limit cycle behavior in heavy chatter and more complex
dynamics in mild chatter.  Chaotic dynamics has also been found in related models [5, 22].

For completeness, we mention two other empirical models of machining dynamics.  Grabec
[6–8] used a pair of coupled nonlinear oscillators in the cutting direction (x) and depth of cut (y)
with empirical models for the damping and driving forces and found chaotic features in the
resulting dynamics.  Hualing [9] included a nonlinear hysteretic restoring force and found a
stability boundary that is consistent with observations.

A variety of approaches have been proposed to control or reduce chatter.  See Refs. 29–56
on general control methods for chaotic systems and Refs. 57–58 for an extensive bibliography on
chatter control.  One standard technique selects machining parameters that avoid chatter opera-
tion.  Another method [27] detects when the dominant chatter frequency crosses a threshold, then
halts the milling feed, adjusts the spindle speed, and resumes the cut.  Telz and Elbestawi [28]
describe a controller for turning that maximizes feed within the constraints of tool breakage and
edge chipping, that also adjusts the depth of cut to avoid chatter onset.  Feedback control can
dynamically damp the period-1 motion.  Pratt and Nayfeh [57–58] showed biaxial suppression of
boring-bar chatter with an active vibration absorber that employed reaction mass actuators.  A
very recent approach [59] vibrates the tool at a frequency equal in amplitude, but opposite in
phase, to the cutting vibration of boring bars, thereby extending chatter thresholds up to 400%.
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Robust and efficient chatter control is rendered very difficult by friction, noise, and discrete
chip removal due to discontinuous behavior [40].  Moreover, prolonged chatter frequently
enhances tool wear, which may cause a threshold change for chatter, thus complicating control
further.  Therefore, delay coordinate methods [e.g., Refs. 41–43] appear inappropriate for control
of discontinuous systems.  Feedback control cannot ignore noise in targeting and stabilization
requiring frequent changes for efficient chatter suppression or enhancement. Another chatter
control alternative is based on the enhancement of low-amplitude chaos along the tool axis, by
synchronization of the tool-part motion to prerecorded nonchatter motion.  However, such
methods must balance the competition between chaos and nonlinear dynamic damping.  For
example, Boffetta et al. [56] show examples of driver-slave systems that would not be amenable
to synchronization or entrainment.

In this work, we study nonlinear features of cutting power and energy to evaluate the
prospects of chaos control of tool chatter by the Ott–Grebogi–Yorke scheme.  See Ref. 48 for an
extensive discussion of this method and related bibliography.  This approach appears both
feasible and reasonable, based on substantial experimental successes for both low- and high-
dimensional processes [29–33].  Moreover, the method requires rather precise determination of
the stable and unstable manifolds, which we discuss in the present work.

This paper is organized as follows.  Section 2 explains the data acquisition.  Section 3
describes the formulation of machining power and cycle-to-cycle energy.  Section 4 presents our
results, including return maps for the cycle-to-cycle tool energy.  Section 5 discusses the
implications of our work.
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2.  DATA ACQUISITION

We obtained data during turning of a 316 stainless steel cylinder on a lathe (Monarch Mark
Century 2000) in Building 9737 at the Y-12 Plant in Oak Ridge, Tennessee.  The cutting tool was
a diamond-shaped carbide insert.  The analog-to-digital converter recorded the data with 12-bit
precision (i.e., values between –2048 and +2047).  The acceleration data were given in arbitrary
units, so all subsequent results are in arbitrary units (AU).  The data sampling rate was 50
kilohertz) for each of the three orthogonal accelerations (A) in the (x, y, z) directions:  Ax, Ay, Az.
 The accelerometer accuracy was "2% accuracy at #7 kilohertz, rising to "5% accuracy for #10
kilohertz.  Accelerometer calibration above 10 kilohertz was unavailable.  The coordinate system
is fixed with respect to the tool and has “x” along the cutting direction, “y” along the tool axis,
and “z” along the feed direction which is also the axis about which the turning occurs (see
Fig. 2.1).

Table 2.1 summarizes the parameters for five datasets of stainless steel machining
(0.3048-mm feed rate per revolution, 0.254-millimeter depth of cut), at spindle speeds of 75, 100,
125, and 150 rpm.  Datasets #091802 and #091803 were at the same spindle speed (100 rpm) and
showed consistent results [1].  The principal Fourier frequency (fp) increases monotonically with
spindle speed for all three components of the acceleration.  The number of timesteps per cycle
(Tc) measures the average cycle period.  Tc(Ax) and Tc(Az) decrease with increasing spindle
speed, but Tc(Ay) is nonmonotonic.  The acceleration amplitude range ()Ai) is the difference
between the largest and smallest value of each acceleration component (Ai ) for i = (x, y, or z).
)Ay rises as the spindle speed increases, with the two largest values corresponding to the chatter
regime. The amplitude range in the other two channels ()Ax and )Az ) is nonmonotonic.

Table 2.1.  Summary of datasets


Dataset


Parameter 091801 091802 091803 091804 091805

Spindle speed (rpm) 75 100 100 125 150
Cutting regime nonchatter nonchatter nonchatter chatter chatter
fp(Ax) (Hz) 1514 1526 1538 1563 1575
fp(Ay) (Hz) 1514 1526 1538 1563 1575
fp(Az) (Hz) 3027 3064 3064 3113 3149
Tc(Ax) (timesteps/cycle) 33.0 32.7 32.6 32.1 31.7
Tc(Ay) (timesteps/cycle) 26.2 27.3 30.7 32.1 31.7
Tc(Az) (timesteps/cycle) 16.5 16.3 16.3 16.0 15.9
)Ax (AU) 584 479 433 474 387
)Ay (AU) 169 219 178 272 387
)Az (AU) 172 154 115 153 178
______________________________________________________________________________



5

Fig. 2.1.  Coordinate system (x, y, z) for the tool-part configuration.
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3.  FORMULATION OF CYCLE ENERGY

Previous experience revealed a fruitful line of analysis by characterizating each cycle of a
process by a single nonlinear measure.  For example, cycle-to-cycle analysis in an internal com-
bustion engine showed that chaos in lean-burn dynamics arises from the carry-over of combus-
tion products from the previous cycle [37].  Typical cycle-to-cycle measures in a mechanical
system are particles (or mass), momentum, and energy.  Regarding mass, the large-scale metal
removal rate is set by the cutting parameters (depth of cut, feed rate, width of cut, and spindle
speed), but microscopic variations are very difficult to measure with sufficient speed and
accuracy.  Regarding momentum, our previous work [1] showed that all three components of
acceleration are necessary to characterize tool chatter.  Rather, we use energy as a single integral
quantity to characterize the cycle-to-cycle cutting dynamics.

Energy (Ei) is the time integral over the i-th power cycle (P = F A V) with the raised dot
denoting vector dot product between vector quantities (denoted by bold-face symbols).  Here, F
is the force vector, which is the product of tool mass, m, and acceleration, A.  V is the velocity
vector, which is the time integral of acceleration.  Combining these quantities yields:

Vk = I Ak dt , (3.1)

P = F A V = m (Ax Vx + Ay Vy + Az Vz) , (3.2)

Ei = I P dt = mI (Ax Vx + Ay Vy + Az Vz) dt . (3.3)

The index k in Eq. 3.1 corresponds to the three orthogonal components (x, y, and z) of accelera-
tion and velocity.  Figure 3.1(a) shows a typical time-serial plot of Ay (solid curve).  Numerical
integration at the lowest order (trapezoidal rule) yields a nonphysical, continuous decrease in the
average velocity, as illustrated by the dot-dashed curve in Fig. 3.1(a).  Moreover, fourth-order
integrators [38] yield the same continuous shift in average velocity (not shown).  Since the diver-
gence does not depend on the integration method, it most likely arises from unspecified systema-
tic errors in the acceleration data, which we cannot correct after the fact.  We remove this diver-
gence in velocity via a zero-phase, quadratic filter [39] with a filter-window width of 1001
points, corresponding to 60–85 cycles in velocity dynamics.  This filter removes offsets (e.g., due
to the initial conditions of velocity integration, which are unknown) and eliminates the contin-
uous decrease in average velocity (due to the systematic errors in the data).  After this filtering
operation, Vk and P vary smoothly about zero during the entire time history for all of the datasets
[Fig. 3.1(b)].  Subsequent analysis uses only the filtered velocities and power.

We used zero-crossings in the power (P = 0) to determine the integration (cycle) times.  In
particular, we found positive-going zero-power crossings (i.e., changes from P<0 to P>0), and
then obtained the corresponding times for zero-power crossings (ti

+) by linear interpolation.  Inte-
gration for positive-starting cycle energy (Ei

+) begins at ti
+ and ends at ti+1

+, as illustrated in Fig.
3.1(c).  Likewise, we found negative-going zero-power crossings (i.e., changes from P>0 to P<0)
and the corresponding times for zero-power crossings (ti

-), with the integration time from ti
- to

ti+1
- for the negative-starting cycle energy (Ei

-), also as shown in Fig. 3.1(c).
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Fig. 3.1.  Typical time-serial plots for dataset #091801 of (a) Ay (solid curve) and Vy

(-·-) from Eq. 3.1, (b) Ay (solid curve) and Vy (-·-) after filtering, and (c) power (solid curve)
and the line P=0 (-·-) for determination of zero-power crossings (see text for discussion).
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4.  RESULTS

Table 4.1 summarizes the characteristics of chatter acceleration and velocity.  In particular,
we compare the average cycle time from Table 2.1 for accelerations, Tc(Ak), with the average
cycle time for power, Tc(P).  We note that the cycle times for power are identical to Tc(Az) in the
nonchatter regime (datasets #091801–091803), but are very different from any acceleration cycle
times during chatter (datasets #091804–091805).

Table 4.1.  Comparison of average cycle lengths


Dataset


Parameter 091801 091802 091803 091804 091805

Spindle speed (rpm) 75 100 100 125 150
Cutting regime nonchatter nonchatter nonchatter chatter chatter
Tc(Ax) (timesteps/cycle) 33.0 32.7 32.6 32.1 31.7
Tc(Ay) (timesteps/cycle) 26.2 27.3 30.7 32.1 31.7
Tc(Az) (timesteps/cycle) 16.5 16.3 16.3 16.0 15.9
Tc(P) (timesteps/cycle) 16.5 16.3 16.3 13.2 11.8


Figure 4.1 shows typical plots of power (P) for the five datasets.  The top plot at 75 rpm
[dataset #091801 in Fig. 4.1(a)] is farthest from chatter and has the lowest power variation ("17
AU).  This power also has the most complex waveform, arising from strong chaotic features in
the tool-part interaction.  The second and third plots from the top at 100 rpm [datasets #091802–
091803 in Figs. 4.1(b) and 4.1(c), respectively] are barely in the nonchatter regime and have
slightly larger power variation ("19 AU).  These powers have a less complex waveform, indicat-
ing weaker chaotic features.  The fourth plot at 125 rpm [dataset #091804 in Fig. 4.1(d)] is barely
into chatter and has a larger power variation ("29 AU).  This power has rhythmic features indi-
cating the presence of periodic (chatter) motion.  The bottom plot at 150 rpm [dataset #091805 in
Fig. 4.1(e)] is well into chatter and has the largest power variation ("50 AU).  The power for this
last dataset has the strong periodic features of chatter motion that can create poor quality cutting
of the workpiece and excessive tool wear.

Figure 4.2 shows the Fourier spectrum of the power P for the five datasets.  The top plot at
75 rpm [dataset #091801 in Fig. 4.2(a)] has many peaks, indicating chaotic competition among
many different frequencies and no significant peaks above 12 kilohertz.  The second and third
plots at 100 rpm [datasets #091802–091803 in Figs. 4.2(b) and 4.2(c), respectively) show fewer
distinct peaks.  The largest peak occurs at 3 kilohertz, with secondary peaks at 1.5, 4.5, 6.1, and
subsequent intervals of 1.5 kilohertz.  Other (side-band) peaks occur at ~320 hertz above and
below these important frequencies.  Some significant frequency peaks occur above 12 kilohertz,
particularly in Fig. 4.2(c), also at intervals of 1.5 kilohertz.  The fourth plot at 125 rpm [dataset
#091804 in Fig. 4.2(d)] has even sharper peaks at roughly the same frequencies, with clear peaks
above the noise floor at frequencies above 12 kilohertz.  The bottom plot at 150 rpm [dataset
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Fig. 4.1.  Typical plots of machining power vs time at (a) 75 rpm, (b) 100 rpm (dataset
#091802), (c) 100 rpm (dataset #091803), (d) 125 rpm, (e) 150 rpm.
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Fig. 4.2.  Fourier spectrum of P at (a) 75 rpm, (b) 100 rpm (dataset #091802), (c) 100
rpm (dataset #091803), (d) 125 rpm, (e) 150 rpm.
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#091805 in Fig. 4.2(e)] has very sharp peaks and very little side-band structure, also with clear
peaks above the noise floor at frequencies above 12 kilohertz.  The important peaks in these plots
correspond exactly with the values in Table 4.1, as shown in Table 4.2 (below).

Table 4.2.  Important frequencies from the Fourier spectra of the power P


Dataset


Parameter 091801 091802 091803 091804 091805

Spindle speed (rpm) 75 100 100 125 150
Cutting regime nonchatter nonchatter nonchatter chatter chatter
fp(Ax) (Hz) 1514 1526 1538 1563 1575
fp(Ay) (Hz) 1514 1526 1538 1563 1575
fp(Az) (Hz) 3027 3064 3064 3113 3149
Fourier peaks (Hz) 1148 1209 1221 1306 1355

1514 1526 1538 1563 1575
1880* 1856 1843 1819 1807
3027 3064* 3064* 3113* 3149*
4541+ 4589+ 4602+ 4675+ 4724
6055 6128 6128 6226 6299+


* Indicates largest-amplitude peak in Fourier spectrum of machining power.
+ Indicates second largest-amplitude peak in Fourier spectrum of machining power.

We also obtained nonlinear measures of the machining power.  Specifically, we determined
the mutual information function, correlation dimension spectrum, entropy spectrum, principal
components, phase-space plots, and return maps.  Our previous work [1] explained the meaning
of and methodologies for these measures, so we will not repeat that discussion here.

Figure 4.3 shows the mutual information function (MIF) for each dataset.  The top plot
[Fig. 4.3(a) at 75 rpm] has a few isolated peaks and little structure, indicating chaotic (nonchat-
ter) cutting.  The second and third plots [Figs. 4.3(b)–4.3(c) at 100 rpm) have a repetitive struc-
ture with many peaks and valleys, as precursors to chatter, even though these data are for non-
chatter cutting.  The fourth plot [Fig. 4.3(d) at 125 rpm] has a periodic structure of one large peak
followed by three lower peaks showing that the tool-part motion is in mild chatter.  The bottom
plot [Fig. 4.3(e) at 150 rpm] has the same periodic structure as Fig. 4.3(d) for lag values <300
timesteps, then has a sequence of evenly spaced, monotonically decreasing peaks for lag values
>300 timesteps.  The maximum MIF value at zero lag is 2.81, 3.50, 3.80, 3.94, and 4.46 bits for
3.80, for datasets #091801–091805, respectively, and might be used as simple chatter detector. 
The first minimum always occurs at a lag of four timesteps.
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Fig. 4.3.  Mutual information function of the power P at (a) 75 rpm, (b) 100 rpm
(dataset #091802), (c) 100 rpm (dataset #091803), (d) 125 rpm, (e) 150 rpm.
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Figure 4.4 shows principal component (PC) plots of machining power for each dataset.  The
principal components are rank ordered according to the size of the eigenvalue of the average cor-
relation matrix of P, corresponding to the largest (PC1), second largest (PC2), and third largest
(PC3) eigenvalues, respectively.  The left, middle, and right column of plots show PC2 vs PC1,
PC3 vs PC1, and PC3 vs PC2, respectively.  The first through fifth row of plots show the plots
for datasets #091801–091805, respectively.  These figures display a clear structure in the dynam-
ics of P, as a visualization (attractor) of the motion. The first two principal components (left
column) reveal the clearest noise-filtered structure, which is the focus of the subsequent discus-
sion.  In Fig. 4.4(a) (75 rpm), two different heart-shaped figures (lying on their sides) are joined
at their vertices, along with other loop-like structures, indicating several periodicities that con-
tribute to the strong chaotic features of nonchatter cutting.  In Figs. 4.4(d) and 4.4(g) (100 rpm),
the motion takes the form of a large outer loop that is joined at the vertex by an inner (secondary)
loop, as a period-2 orbit.  In Fig. 4.4(j) (125 rpm), the motion is predominantly in the large outer
loop, connecting to a slightly smaller inner loop that shows the periodic nature of slight chatter. 
In Fig. 4.4(m) (150 rpm), the chatter motion is a simple, almost circular period-1 orbit.  The third
PC (middle and right columns) is very complex, indicating the presence of some chaotic features
even during chatter.  We also changed the scale of the axes in these figures to show the most
detail. Nonchatter plots [Figs. 4.4(a)–4.4(i)] have low variability, while the chatter plots [Figs.
4.4(j)–4.4(o)] have large variability, consistent with the power data in Fig. 4.1.

Figure 4.5 shows two-dimensional phase-space diagrams of P(t+L) vs P(t).  The lag (L) is
equal to the position of the first minimum in the MIF (L = 4 as discussed above).  These figures
also illustrate the attractor structure.  Figure 4.5(a) shows the phase-space diagram for 75 rpm as
a large, pointy heart-shaped figure (diagonally oriented), jointed at the vertex with a smaller
rounded heart-shaped figure, plus other looping motion near the vertex.  Figures 4.5(b)–4.5(c)
(100 rpm) also show heart-shaped attractors (diagonally oriented) with noisy loops at the vertex. 
Figure 4.5(d) (125 rpm) depicts the mild chatter motion as a periodic double loop.  Figure 4.5(e)
illustrates the chatter motion at 150 rpm as a single periodic loop.  These phase-space forms are
consistent with the principal component plots without inherent noise filtering.

Figure 4.6 shows the Kolmogorov entropy (K) vs scale length for each dataset.  K measures
the loss of predictability in bits per timestep, which is largest at small-scale length (high unpre-
dictability for noise) and smallest for global scales (good predictability for overall motion). 
Short-scale length corresponds to small changes (noise) in P, while large-scale length charac-
terizes global motion of P.  We measure scale length in units of the absolute average deviation
(AAD) as a robust measure of variability:

( ) .xxN/1AAD
N

1i
i∑

=

−= (4.1)

Here, xi is the value of the observable (power in this case) at the time ti , and x is the average of
the observable (average of P in this case).  The error bars in these figures indicate the 95%
confidence interval for each sampling estimate of K.  Figure 4.6(a) (75 rpm for nonchatter)
shows that K decreases by slightly more than 10-fold as scale length (S) increases from 1 to 7
AADs.  Figures 4.6(b)–4.6(c) (100 rpm for nonchatter) show a decrease in K of more than two
decades as S rises from 1 to 7 AADs.  Figure 4.6(d) (125 rpm for mild chatter) shows K decreas-
ing by more than four decades as S rises from 1 to 7 AADs.  Figure 4.6(e) (150 rpm for strong
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Fig. 4.4.  Principal component plots for datasets #091801–091805 (see text for
discussion).
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Fig. 4.5.  Two-dimensional phase-space plots of the power P for (a) 75 rpm, (b) 100 rpm
(dataset #091802), (c) 100 rpm (dataset #091803), (d) 125 rpm, (e) 150 rpm.
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Fig. 4.6.  LOG10(K) of P vs scale length for (a) 75 rpm, (b) 100 rpm (dataset #091802),
(c) 100 rpm (dataset #091803), (d) 125 rpm, (e) 150 rpm, (f) composite.
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chatter) shows a flat region (1 < S < 3 AADs) of large unpredictability, followed by a six-decade
decrease in K as S increases to 7 AADs.  Figure 4.6(f) is a composite of the previous five sub-
plots.  The upper solid curve is from Fig. 4.6(a) (75 rpm).  The dot–dash (-·-) and dashed (- -)
curves (100 rpm) are from Figs. 4.6(b)–4.6(c), respectively.  The bottom solid curve (125 rpm) is
from Fig. 4.6(d).  The bottom dot–dash (-·-) curve (150 rpm) originates from Fig. 4.6(e).  This
composite shows that K progresses from flat and less predictable (strong chaotic features during
nonchatter cutting) to steeply decreasing and predictable for (periodic) chatter cutting.

This analysis reveals the dynamical structure of P (Figs. 4.4–4.5), as well as at least one
positive Lyapunov exponent, since K is the sum of the positive Lyapunov exponents (Fig. 4.6). 
These two measures (structure and positive Lyapunov exponent) provide a clear indication of
chaos in cutting.  Another important feature of chatter chaos is dimensionality, which we mea-
sure by the correlation dimension (CD) spectrum.  Figure 4.7 shows CD vs scale length (S) for
each dataset, with the error bars indicating the 95% confidence interval and S measured in AAD
units.  The organization of these plots is identical to that of Fig. 4.6.  Large dimensionality (CD >
4) and large error bars occur at small S (the noisy domain).  Small dimensionality (CD ~ 1) and
small error bars exist at large S (the region of global motion).  These figures also display a local
plateau [Fig. 4.7(a)] or a local maximum and a local minimum in CD at intermediate S [Figs.
4.7(b)–4.7(e)].  This feature indicates that interesting and moderate-dimensional behavior in P
(3.5 < CD < 1.5) occurs for scale lengths, 1 < S < 4 AAD.  Figure 4.7(f) is a somewhat expanded
composite plot of the CD spectra with the same organization as in Fig. 4.6(f).  Nonchatter curves
lie above the chatter curves for S > 2.5 AAD. CD at large-scale length (S = 7 AAD) is below
unity during chatter but is above unity during nonchatter cutting.  These trends are consistent
with the previous results of greater nonchatter complexity (strong chaotic features) and lower
chatter complexity (weak chaotic features and strong periodicity).

We next analyze the cycle-to-cycle energy.  Evaluation of Eq. 3.3 for each positive- and
negative-starting power cycle, respectively, yields Ei

+ or Ei
- to characterize the i-th cycle.  Evalu-

ation of Eq. 3.3 over each power cycle produces two, discrete time-serial sequences, {E1
+, E2

+,
... , En

+} and {E1
-, E2

-, ... , En
-}.  These sequences move from one unstable periodicity to another

in recurring patterns that are driven by the tool-part nonlinearity.  We visualize these patterns in a
“return map” by plotting the energies in pairs (Ei+m

 vs Ei).  Points near the diagonal, Ei+m
  = Ei ,

correspond to period-m motion because this location is visited every m-th cycle.  Such points are
also “unstable” because the system does not remain there, and “fixed” because the period-m loca-
tion(s) do not change during repeated visits.  Chaotic systems have an infinite number of un-
stable, periodic, fixed points.  Moreover, stable and unstable directions span the region near an
unstable fixed point in the shape of a multidimensional saddle.  Return-map points approach an
unstable fixed point along a locally linear “stable” direction (or manifold), like a ball rolling
stably toward the center of a saddle.  Return-map points depart from an unstable fixed point
along a locally linear “unstable” direction (or manifold), like a ball rolling rapidly off the side of
a saddle.  The distance between the fixed point and successive departing points increases expon-
entially, displaying sensitivity to initial conditions which is the hallmark of chaos.  Characteri-
zation of this topology requires analysis of the data for multiple approaches to and departures
from the same fixed point along the same directions.  Chatter control might exploit this topology
to enhance chaotic behavior at the expense of periodic behavior.
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Fig. 4.7.  Correlation dimension spectrum of the power P for (a) 75 rpm, (b) 100 rpm
(dataset #091802), (c) 100 rpm (dataset #091803), (d) 125 rpm, (e) 150 rpm, (f) composite.
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Figures 4.8–4.9 show period-1 (m=1) return maps for Ei
+ and Ei

- (i.e., Ei+1
 + vs Ei

+
 , and Ei+1

vs Ei
-
 , respectively).  These figures show the structure of regions that are visited by the tool-part

motion, and regions that are not visited at all.  The dynamics are clustered around the diagonal,
Ei+1 = Ei in both figures, which corresponds to an unstable period-1 orbit.  This structure is sig-
nificantly different from the discrete clusters in the return map for negative- and positive-starting
return times for the accelerations, as shown in Figs. 4.11–4.16 of Ref. 1.

Figure 4.8 shows return maps for Ei
+  (Ei+1

 + vs Ei
+) that change in structure with increasing

spindle speed.  The nonchatter return map in Fig. 4.8(a) is most complex (two sharp corners and
two fingers in the cluster) with the least variability (most compact) at a spindle speed of 75 rpm. 
Figure 4.8(b) shows the nonchatter return map at 100 rpm which is less complex (two rounded
corners and two fingers in the cluster).  Figure 4.8(c) shows a nonchatter return map for dataset
#091803 (also at 100 rpm but with a slightly smaller workpiece radius) with two distinct clusters,
one on each side of the diagonal.  Figure 4.8(d) has a single, somewhat elongated cluster at 125
rpm (chatter) with significantly more variability than the nonchatter dynamics.  Figure 4.8(e) also
has one high-variability cluster at 150 rpm (chatter).  The clear progression is from more to less
complexity and from less to more variability, corresponding to a weakening in chaotic features
and larger variability in cycle-to-cycle energy as the spindle speed increases.

Figure 4.9 also shows return maps for Ei
- (Ei+1

- vs Ei
-) with large changes in structure as

spindle speed increases.  The three nonchatter return maps at 75–100 rpm [Figs. 4.9(a)–4.9(c)]
have three or four arms and resemble various perspectives of a bird in flight.  The return map at
125 rpm [Fig. 4.9(d)] is a more compact cluster with somewhat less variability (corresponding to
periodic chatter motion) and short, diffuse arms (corresponding to some variability).  The return
map at 150 rpm [Fig. 4.9(e)] shows an even more compact cluster (corresponding to very strong
periodic chatter motion) with three very diffuse arms (indicating little chaotic variability).  The
progression is again from more to less complexity, and from less to more periodicity, as the
spindle speed rises.  Moreover, these return maps for Ei

- are very different from the return maps
for Ei

+ (Fig. 4.8) because the workpiece constrains the tool motion in the negative direction but
not in the positive direction.  We focus subsequent analysis on return maps for Ei

- , which show
favored directions more clearly as indications of the (un)stable manifolds.

Based on work by Schiff et al. [29], we use the following criteria to determine a fixed point,
together with (un)stable directions to and from the fixed point:

(1) points approach the unstable fixed point along a locally linear stable direction;
(2) points depart from the unstable fixed point along a locally linear unstable direction; and
(3) repeated approaches to and departures from the same fixed point occur along the same

directions.
These three criteria provide a statistical basis of multiple approaches to and departures from the
fixed point(s) and also avoid nonphysical identifications from isolated (random) events.  For this
purpose, we find ten or more Ei

- points that satisfy | Ei
- - Ei+m - | # ,, for the chosen period-m

motion.  We measure , in units of the absolute average deviation (AAD).  Referring to Eq. 4.1
for AAD, xi in this instance is Ei 

-, and x is the average over Ei 
-.  We analyze Ei

+ similarly.  Sub-
sequent discussion presents specific results of our analysis.
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Fig. 4.8.  Return maps for Ei
+  (lag = 1):  (a) 75 rpm, (b) 100 rpm (dataset #091802),

(c) 100 rpm (dataset #091803), (d) 125 rpm, (e) 150 rpm.
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Fig. 4.9.  Return maps for Ei
- (lag = 1):  (a) 75 rpm, (b) 100 rpm (dataset #091802),

(c) 100 rpm (dataset #091803), (d) 125 rpm, (e) 150 rpm.
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Figure 4.10 shows return maps of Ei
- for dataset #091801 (nonchatter turning at 75 rpm). 

These figures show Ei+1+n 
- vs Ei+n 

-, for –5 # n # 5, where the i-values correspond to points that
lie near the period-1 fixed point with (Ei+1 

-)2 + (Ei 
-)2 # ,2, for , = 0.2 AAD.  Figure 4.10(f)

shows the fixed point as a small, circular cluster of points, centered on the origin.  The figures
start with the fifth precursor to the fixed point (n = –5) in Fig. 4.10(a), then the fourth precursor
(n = –4) in Fig. 4.10(b),..., the fourth successor to the fixed point (n = +4) in Fig. 4.10(j), and
finally the fifth successor cluster (n = +5) in Fig. 4.10(k).  These figures show the evolution of
the machining dynamics toward, near, and away from this period-1 fixed point.

We next examine the details of this return map.  Figure 4.10(g) shows points immediately
after the fixed point (i.e., n = +1).  This cluster has a vertical orientation because most points
leave the fixed-point region in a single step; this single-step departure occurs in all five datasets. 
This feature is in sharp contrast to most dynamical systems, which require two (or more) steps
for a return map point to leave the neighborhood of the fixed point.  In the subsequent step [Fig.
4.10(h) with n = +2], most of the points (forming a dense mass of points in this and other
subplots) occur on a straight line that has a negative slope and magnitude less than one, indicat-
ing the stable direction.  In the next step [Fig. 4.10(i) with n = +3], the massive cluster of points
lies along a roughly straight line with positive slope and magnitude greater than one, correspond-
ing to the unstable direction.  In subsequent steps [Figs. 4.10(j)–(k)], the massive cluster alter-
nates between following the same stable and unstable directions.  The remaining seven points in
the cluster occur very close to the fixed point in Fig. 4.10(g) and in the next step [Fig. 4.10(h)]
follow the same vertical straight line along which previous mass of points departed from the
fixed point.  In subsequent frames [Figs. 4.10(i)–(k)], these seven points also alternate between
the same stable and unstable directions that the massive cluster of points followed.  The points
also follow the same alternation between the (un)stable directions in approaching the fixed point
[Figs. 4.10(a)–(d)].  Thus, the vertical direction in Figs. 4.10(g)–(h) and the horizontal direction
in Fig. 4.10(e) are artifacts of the return map construction and do not show the real (un)stable
direction(s) because the return map points arrive at and depart from the fixed-point region in one
step.  Figure 4.10(l) is a composite plot of the stable and unstable directions. 

Figure 4.11 shows composite plots of the (un)stable directions from the above analysis.
Figure 4.11(a) shows the (un)stable directions (manifolds) from the composite plot in Fig. 4.10(l)
as large dots for dataset #091801.  For reference, Fig. 4.11(a) also shows all of the other return
map points (small dots) from Fig. 4.9(a), illustrating how the (un)stable direction(s) occur within
the complete return map.  In the same fashion, Figs. 4.11(b)–(e) show composite plots of the
(un)stable directions for datasets #091802–091805, respectively.  We note that the (un)stable
directions are only a portion of the complete return map in Fig. 4.11(a) because the machining
dynamics is far from chatter at 75 rpm.  However, the (un)stable manifolds engulf the return map
attractors in Figs. 4.11(b)–(e) because the tool-part motion is close to or in chatter, and, thus, the
dynamics spend most of the time moving near the fixed point.  Moreover, Figs. 4.11(d)–(e) show
very little of the unstable manifold (the direction with positive slope and a magnitude greater
than one), because chatter involves motion mostly toward and at the fixed point and seldom away
from the fixed point.  We confirmed these (un)stable manifolds (not shown) for other search radii
(,), and by requiring that the dynamics remain within this radius of the fixed point for two and
three steps in the return map.  The dominant motion is near the fixed point during chatter, consis-
tent with our earlier interpretation of tool chatter as periodic motion near the fixed point [1].
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Fig. 4.10.  Return maps for Ei
-  (lag = 1) to and from the fixed point for dataset

#091801 (see text for discussion).
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Fig. 4.11.  Stable and unstable manifolds for Ei
- (lag = 1):  (a) 75 rpm, (b) 100 rpm

(dataset #091802), (c) 100 rpm (dataset #091803), (d) 125 rpm, (e) 150 rpm.
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Figure 4.12 shows an example of period-1 Ei
+ return maps for dataset #091801 (75 rpm in

nonchatter) analogous to Fig. 4.10.  The residence time at the fixed point is three timesteps [Figs.
4.12(e)–4.12(g)] with , = 0.6 AAD.  The slope of the incoming direction decreases monotonic-
ally in Figs. 4.12(a)–4.12(d), with values ~2, ~1, ~1/2, and ~0, respectively.  The magnitude of
the slope of the outgoing direction also decreases monotonically in Figs. 4.12(h)–4.12(k), with
values ~4, ~2, ~1, and ~1/2.  For all spindle speeds, we obtained similar results which violate the
statistical criteria for unstable fixed points and (un)stable manifolds.  Consequently, the compos-
ite return maps have no clear directionality, but are elongated blobs that resemble fuzzy versions
of the original return maps in Fig. 4.8.  Thus, we did not study Ei

+ return maps further.

The return maps for Ei
-  and Ei

+ are very different because the tool motion is constrained in
one sign of each acceleration direction by contact with the workpiece, but is unconstrained in the
other sign (see Fig. 2.1).  For example, Fig. 2.9 of Ref. 1 shows a clear limit in the x-component
of acceleration (Ax / -100 in. AU) at all four spindle speeds, but no such constraint exists for
Ax > 0.  Moreover, (constrained) valleys for Ax < 0 are much flatter, while the (unconstrained)
peaks for Ax > 0 have sharp changes.  The waveform for Ax is asymmetric because cutting occurs
in the negative-x direction, resulting in chip removal as a dissipative, discontinuous process. 
Motion for Ax > 0 does not involve cutting and, thus, is conservative and continuous.  Analogous
arguments for Ay and Az (Figs. 2.10–2.11 in Ref. 1) lead to the above conclusion.

We investigated higher-period fixed points.  Figure 4.13 shows the occurrence frequency of
period-m motion relative to the dominant occurrence frequency.  The left (right) column of sub-
plots in Fig. 4.13 show the period-m occurrence frequency relative to period-1 for positive-
(negative-) going energies, respectively.  The results for successive datasets #091801–091805
progress from the top to the bottom plots, respectively.  This plot shows the occurrence of Ei

+

pairs and Ei
- pairs that satisfy the condition, (Ei+m

")2 + (Ei 
")2 # ,2, for , = 0.5 AAD.  For

period-m motion, we also excluded pairs that had Ei values in period-1 through period-(m-1) to
avoid multiple counting of the periodicities.  Period-1 dominates in all but one case.  Period-2
dominates in Ei

+ for dataset #091803 [Fig. 4.13(e)] and also is evident in Fig. 4.8(c) as the two-
lobed structure on either side of the diagonal (Ei +1

+ = Ei 
+).  The period-2 features are related to

the transition from nonchatter to chatter cutting as the spindle speed increases from 100 to 125
rpm.  We further note that the subdominant peaks in the occurrence distributions for Ei

" [Figs.
4.13(a)–4.13(f)] correspond to other periodicities that contribute to the chaotic motion in
nonchatter turning.  Figures 4.13(h) and 4.13(j) show no subdominant peaks, corresponding to
the overwhelming presence of period-1 dynamics during chatter.  We did not pursue further
details of period-m motion due to the predominance of period-1 dynamics in Ei 

"

We also studied return maps for cycle times, Ti
" = ti+1

" - ti
".  We give cycle time values in

timesteps with 2 × 10-5 seconds per timestep from a data sampling rate of 50,000 Hz.  Figure
4.14 shows the period-1 return map (Ti+1

+ vs Ti
+) for each dataset.  Figure 4.14(a) (nonchatter at

75 rpm) shows a large cluster centered on the diagonal, Ti+1
+ = Ti

+ = 20.  Other discrete clusters
occur on either side of the diagonal with values of Ti

+ ~ 2, Ti
+ ~ 30, and Ti

+ ~ 60.  Figures
4.14(b)–4.14(c) (nonchatter at 100 rpm) show the same (but smaller) cluster that is centered at
and 150 rpm, respectively) have a single dense cluster that is centered on the diagonal at Ti+1

+ =
Ti

+ = 15.  Variation in cycle times is large at 75 rpm (1 < Ti
+ < 65), smaller at 100 rpm (2 < Ti

+ <
32 for dataset #091802 and 6 < Ti

+ < 25 for dataset #091803), smaller still at 125 rpm (6 < Ti
+ <
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Fig. 4.12.  Period-1 return map for Ei
+ for dataset #091801 (see text for discussion).
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Fig. 4.13.  Normalized period-m occurrence frequency vs m for Ei
+ (left column) and Ei

-

(right column) for datasets #091801 (top)–091805 (bottom).
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Fig. 4.14.  Period-1 return maps for Ti
+:  (a) 75 rpm, (b) 100 rpm (dataset #091802),

(c) 100 rpm (dataset #091803), (d) 125 rpm, (e) 150 rpm.
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23), and smallest at 150 rpm (12 < Ti
+ < 20).  This trend is consistent with many periodicities for

chaotic (nonchatter) cutting and a single dominant periodicity for chatter.  In every instance, the
clusters lie perpendicular to the diagonal, suggesting the presence of many periodicities.

Figure 4.15 shows the period-2 Ti
+ return maps (Ti+2

+ vs Ti
+), with the same organization as

in Fig. 4.14.  Figure 4.15(a) (nonchatter at 75 rpm) shows a large cluster that is centered on the
diagonal at Ti+2

+ = Ti
+ = 15 with two diffuse arms along the lines of Ti

+ = 20 and Ti+2
+ = 20. 

Three other small clusters appear in Fig. 4.15(a) at Ti
+ ~ 5, Ti

+ ~ 30, and Ti
+ ~ 60.  Figures

4.15(b)–4.15(c) (nonchatter at 100 rpm) show a single massive cluster with small arms along the
lines of Ti

+ = 10 and Ti+2
+ = 10.  Figures 4.15(d)–4.15(e) (125 and 150 rpm during chatter,

respectively) show one cluster on the diagonal, centered at Ti+2
+ = Ti

+ = 15.  The cluster vari-
ability is the same as in Fig. 4.14.  The clusters are oriented along the diagonal, especially for
Figs. 4.15(b)–4.15(e).

Figure 4.16 shows the period-3 Ti
+ return map (Ti+3

+ vs Ti
+), with the same organization as

in Fig. 4.14.  Figure 4.16(a) has an elongated cluster that is centered on the diagonal at Ti+3
+ =

Ti
+ = 15, plus four arms, as well as some smaller diffuse clusters.  Figures 4.16(b)–4.16(d) show

circular clusters that are all centered on the diagonal at Ti+3
+ = Ti

+ = 15.

Figure 4.17 shows period-1 Ti
- return maps (Ti+1

- vs Ti
-), with the same organization as in

Fig. 4.14.  Many clusters occur at all spindle speeds with decreasing complexity as spindle speed
increases.  The clusters have a reflection symmetry about the diagonal.  Cluster spacing is more
regular in chatter [Figs. 4.17(d)–4.17(e)].  The complexity decrease with increasing spindle speed
is consistent with nonchatter chaos and strong periodicity (weak chaos) during chatter.

Figure 4.18 shows period-2 Ti
- return maps (Ti+2

- vs Ti
-) with the same organization as in

Fig. 4.14.  Many discrete clusters occur at all spindle speeds, with high cluster complexity during
nonchatter cutting [Figs. 4.18(a)–4.18(c)] and less complexity during chatter [Figs. 4.18(d)–
4.18(e)].  These (and higher period) clusters have a more regular spacing than in Fig. 4.17.

Figure 4.19 displays the relative occurrence frequency distribution for Ti
", using the same

methodology as in Fig 4.13.  Period-1 motion is dominant in nonchatter cutting [Figs. 4.19(a)–
4.19(d) and 4.19(f)].  Period-2 dominates in near-chatter [Fig. 4.18(e)] and chatter cutting [Figs.
4.19(g)–4.19(j)].  We did not pursue higher-period return maps further. 

We finally analyze return maps for Ti
+ because the discrete, regular structure in Ti

- return
maps (Figs. 4.17–4.18) is not suggestive of (un)stable manifolds.  Figure 4.20 shows an example
for dataset #091802 (100 rpm in nonchatter) analogous to Figs. 4.10 and 4.12.  The residence
time at the fixed point is three timesteps [Figs. 4.20(e)–4.20(g)] with , = 0.6 AAD.  The
magnitude of the slope of the incoming and outgoing directions decreases monotonically [Figs.
4.20(a)–4.20(d)] of the slope of the incoming and outgoing directions decreases monotonically
[Figs. 4.20(a)–4.20(d) and 4.20(h)–4.20(k)] as the dynamics arrive at and depart from the fixed
point.  For all spindle speeds, we obtained similar results which violate the statistical criteria for
unstable fixed points and (un)stable manifolds.  Consequently, the composite return maps have
no clear directionality (not shown) but are simply elongated blobs that resemble fuzzy versions of
the original return maps in Fig. 4.8.  Thus, we did not study Ti

+ return maps further.
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Fig. 4.15.  Period-2 return maps for Ti
+:  (a) 75 rpm, (b) 100 rpm (dataset #091802),

(c) 100 rpm (dataset #091803), (d) 125 rpm, (e) 150 rpm.



31

Fig. 4.16.  Period-3 return maps for Ti
+:  (a) 75 rpm, (b) 100 rpm (dataset #091802),

(c) 100 rpm (dataset #091803), (d) 125 rpm, (e) 150 rpm.
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Fig. 4.17.  Period-1 return maps for Ti
-:  (a) 75 rpm, (b) 100 rpm (dataset #091802)

(c) 100 rpm (dataset #091803, (d) 125 rpm, (e) 150 rpm.
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Fig. 4.18.  Period-2 return maps for Ti
-:  (a) 75 rpm, (b) 100 rpm (dataset #091802),

(c) 100 rpm (dataset #091803), (d) 125 rpm, (e) 150 rpm.
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Fig. 4.19.  Normalized period-m occurrence frequency vs m for Ti
+  (left column) and Ti

-

(right column) for datasets #091801 (top)–091805 (bottom).
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Fig. 4.20.  Period-1 return map for Ti
+ to and from the fixed point for dataset #091802

(see text for discussion).
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5.  DISCUSSION

In this paper, we explore the prospects of controlling machine tool chatter by using the OGY
scheme for chaos maintenance.  We find that the tool-part dynamics are best revealed in the
sequence of negative-starting cycle energies (Ei

-), including a detailed analysis of return maps for
Ei

-. This analysis reveals the following features:

• period-1 motion totally dominates the turning dynamics with and without chatter;

• nonchatter cutting displays (un)stable manifolds in the energy return map, along which
the dynamics move toward and away from the period-1 fixed point;

• chatter displays a period-1 fixed point, a clear stable manifold, and a small unstable
manifold, arising from dynamics that seldom move away from the fixed point;

• return maps reveal dynamics that depart from and arrive at the period-1 fixed point in a
single step rather than in several steps as in most chaotic processes; and

• many periodicities exist, combining to create chaotic features, especially in nonchatter.

These findings have implications for the pursuit of experimental approaches to chatter
control by using the OGY scheme.  Indeed, chatter control seems possible in principle, either via
maintenance of the chaotic (nonchatter) dynamics, or by conversion of periodic motion (chatter)
to chaotic (nonchatter) dynamics.  Based on the results of the present analysis, the prospects for
chatter control by chaos maintenance are rather poor, due to the single-step departure from the
period-1 neighborhood (e.g., Fig. 4.10).  Conversion of periodic (chatter) dynamics to more
chaotic (nonchatter) motion is one option via dynamic damping, based on recent work by Pratt
and Nayfeh [57–58].  However, we are pursuing a new alternative [60-61], based a phase-space
(PS) representation of time series data, which in turn is converted into a probability density
function.  An advanced version of this technique [62] connects sequential pairs of points in the
PS, thereby providing a data-driven representation of multidimensional flow.  We plan to use this
approach to identify noisy transitions between convergent (folding) and divergent (stretching)
dynamics.  Extreme sensitivity to perturbations at one (or more) of these transition points would,
in principle, allow robust control of tool chatter.
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