10. ALPHA PARTICLE SOURCE FUNCTION
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The first step in solving (9.19) is determining the initial

conditions, i.e. the alpha source rate, at v = Vs where Ve is the

birth speed corresponding to 3.5 MeV. This is done by integrating

I

(9.19) over an element of 6-space, d"vd"x, from v - Av < v <v

+ Av, then taking the Timit Av=0. Integrating by parts, and noting

that there cannot be an accumulation of particles in any volume

element, the result is:

f(vo,co,wxo) = BVt o0, o )/ ATU(V T s, ).

(10.1)

The 6-space volume element used above is most easily found through

the pair of transformations (R,z,v,n) - (B,y,v,n) + (w,wx,v,c),

yielding

‘ T
d>vd®x = (2nvidvd) (2nRdy, dy)/, @9 Jz(‘B‘%) ’

where the Jacobians are

B,y
g (R,z)

T

._>.
R|B-vB|, and

~ 3 5 2 3 2 I 1
- (____> = 2B F[1-%(1-c")B/B, 1/F B (1+c")[B] -B. |.

B.n e

3

Combining (10.2) - (10.4), d vd3x can be written as:

3.3 . 2 e
d vd“x = 4mv Jdvdupxdg (dﬂf) dy,

(10.2)

(10.3)

(10.4)

(10.5)
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where J is the 'net' Jacobian of the transformation

2 : i 3
J = wF (1+7)[B -B! /8] . (10.6)

The term (dt'/dy) is obtained from the bounce-time differential,

dt' = dt/ <~3§§> , Where

] [
’ 8%dy (10.7)

d 2e
Tb"ﬁdT“z +w = 2[ zre 2 H
b |vd-vw| ymy v, F|B-VB|[1-B(1-¢ )/ZBX]

and ?d is the particle guiding-center drift velocity. The extra
factor of two in (10.5) and in (10.7) is due to up-down symmetry in

+ z. The remaining problem is to evaluate (10.1).

10.1 Calculation of Integrals

Qur calculations are performed as follows. First, a point in
(v,g,wx) space, corresponding to a particular orbit, is chosen, so as
to lie outside the forbidden region defined by (8.4). Next, the
sequence of points, (wO,BO(wO;V,;,wx)), are calculated along this
orbit between wn_i wo-i wx' The value of wn is found numerically as
the point at which the orbit in B-y space crosses the (B—w)EQ curve
(c.f. Fig. 8.1a). Third, for each point, (Bo,wo), the corresponding

spatial coordinate, (Ro,zo), is found numerically by solving:

1
co

Be(RO,zD)
(10.8)

1
-

R 2]

e 0" o0 0
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using the non-Tinear equation solver HYBRD1[89]. Here, the poloidal
flux function for the equilibrium, we, is found by Lagrangian inter-
polation of y-values given on an (Ri’zj) mesh. The equilibrium

B-field, B = |Eé| is similarly found from [85]:

Ee = {—ﬁﬁ%ﬂ“ E%y + & F(u))} /R, so that (10.9)
B, = /ijz + P2/ R (10.10)
Also, at each spatial point on the orbit, §FVB is obtained:
. LG {2, @@2 +<@)2 el @g@(ﬁ ) a%)
BR4 9z aR 0z BR3 d z 822 EE?
G100 )

2 [(awf _ @ﬂ
oRaz oR oz 7

and used to evaluate the integrand of (10.7). Finally, the bounce-
averaged quantities s and U in (10.1) are determined numerically

(see Appendix E).

10.2 Results

Figure 10.1 shows contours of constant Ty, in (wx,g) space for
3.5-MeV alphas in a D-shaped tokamak reactor having B = 0.8%. In
comparing this to Fig. 8.1c, all the features of the phase space
topology are present. The prominent aspects include the absence of

orbits in the forbidden region (blank portion about ¢ = 0 and near
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Figure 10.1 Contours of constant bounce time, th(us), in (Yy,z)
space for 3.5-MeV alphas in a D-shaped tokamak equi-
Tibrium (B=0.8%).
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wx/we =0), T 5 along the left-hand side of the forbidden region
(for counter-going, x-type stagnation orbits, curve BCD in Fig. 8.1c),
the transition to finite T, at the end of the pinch locus (point H
in Fig. 8.1c), and the transition to finite T, at the x-type to
o-type stagnation-orbit transition (point B in Fig. 8.1¢c). Hinton
et. al. [98] have examined the transport for particles on or near
x-type stagnation orbits and found that a banana-plateau regime
model is required, since T, > . Here, we assume that slowing down
drifts carry fast ions across such regions rapidly enough that the
contribution from plateau-like regimes is small. As expected, cir-
culating ions (z - = 1) have the shortest Ty since they circulate
along an average flux surface. The Tb—va1ue for circulating orbits
(¢ ~ £ 1) increases with increasing wx because the distance that the
ion travels around its average flux surface increases. Also, as
expected, T 1/v, even for 3.5-Mev alphas; this is because the
distance along the orbit, i.e. the connection length, is essentially
independent of v. These features of Ty in (wx,c) space thus rein-
force the orbit topology concepts discussed in Chapter 8.

Another set of important results, which are readily calculated
at this stage, are the flux-surface-averaged source rates for alpha
density and current. At the birth energy, (9.1) becomes:
of - (10.12)

ot

V—VO
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from which the flux-surface-averaged alpha source rate, <ﬁa> 15

2 5
&Y s e fﬁf} a3vax /J a7y = f 200w /J T (10.13)
o ot
v

0 ¥y

and the parallel component of flux-surface-averaged alpha current

rate, <J >, i[5

3 a3

<:]“>= J—S—E evn davdzx /J d2x = I 3 evn 221:3 & /f dgx. (10.14)
Yo ¢1
¥ 2
The integrals J d3x and J d2x are the volume and area, respectively,
¥ ¥

between the flux surfaces labelled by ¢1 and wz, where dzx = dRdz =

d3X/2ﬂR. The corresponding integral over d3Vd3X also requires that

v
the dy piece have the Timits J 2 g%) dy, with a point-wise source
2
rate, s: 1
2
s = n1(w)n2(w) <UV(T(¢))>12 é(v—vo)fdwv . (10.15)

Making these substitutions into (10.13)-(10.14) yields:

3 € | — wz dt! 2 3
<n > = J dy, J dz nyn,<ov> J(wx,c) f (?ﬁf dy /fj d™X 5 (10.16)
0 -1 dj-i 1|!J'I

. 1 v
ey e z 1
B o S T —— dt"\ ndy
=@ = —TFJ dll)x J dg n]n2<0V> J(wx,C) J (dlll—’> T/
0 —

1 ¢1

2 9
d%%. .17

==

1
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These integrals have been evaluated numerically with an error of < 1%
using 128x128 equal intervals in (wx,c) space. MWe assume a 50-50

D-T plasma with parabolic density profiles:
2
np = np = ni(w) = n0[1-.99(w/we) ] (10.18)

The temperature is self-consistently determined from the pressure

profile, p(y), used to determine the equilibrium:

T;(w) = p(y)/akn, (v), (10.19)

i

where k is the Boltzmann constant. The electron density, Ny s is
taken as ng = 2nD; the electron temperature is assumed equal to the
ion temperature, Ti' The central temperature was taken at 15 keV,
and the corresponding g determined from (10.19), with <ov> taken
from Ref. 32.

Figure 10.2 shows <ﬁa> versus y/y for two D-shaped

edge
equilibria (See Table 10.1). For comparison, the point-wise source
rate, ﬁa = NyN,<oV>y 5, is also plotted. The particle source rate

difference, €, is given in Table 10.1 for each case, where

€ = (na—<na>)/<na> ; (10.20)

-2

Since € < 5% for these cases for w/wedge < 0.4, it is concluded that
the "in-situ" deposition model is adequate for determinations of the
total (iontelectron) interior heating. This is because the heating

: 2 . 2
= 1.
rate goes like E ~ Eo<na>, where EO 3 MV .
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Figure 10.2 Flux-surface-averaged particle source rate, <n >,
tnd current source rate, <J,>, for 3.5-MeV al-7
phas in D-shaped ETF equilibria (see Table 10.1).
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Table 10.1. Non-Circular Tokamak Parameters
Low B Medium B
B 0.008 0.075
Bp(a) 0.389 2.688
q(a) 3.207 3.353 given from
equilibrium
Jp1(MA) 5.78 5.95 data
BO(T) hed 4.3
Ro(m) 5.035 5.356
Ij)edgéwb) 3.675 2.985
el %) 4.7 5.4
<1 >(MA/s) 0.021 0.81 calculated
in
Ts(s) 0.3 0.1 present
v <i > (M) 0.02 0.08 work
*
<I">(kA} B 26.

*
For a discussion of convergence of <I >, see Appendix G.
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Figure 10.2 also shows <J“> VErsus wfwedge’ with the values
of <i"> given in Table 10.1. Small banana-width models are in-
adequate to describe this current, which is a large banana-width
effect. McNally [90] has previously estimated the alpha-driven
current using scaling arguments. However, for the purposes of this
section, the current is estimated as the current source rate times

the characteristic slowing time:

I~ <I> T, (102 )

where 8 is the momentum slowing down time (cf. egn. 11.11). The
corresponding estimates for sample cases are given in Table 10.1.
In Chapter 11, we improve on this estimate by calculating <I“> as

the first moment of the slowing down distribution.



