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10. ALPHAPARTICLESOURCEFUNCTION

The first step in solving (9.19) is determining the initial

conditions, i.e. the alpha source rate, at v = Yo' where Vo is the

birth speed corresponding to 3.5 MeV. This is done by integrating
3 3

(9.19) over an element of 6-space, d vd x, from v - 6v < v < vo - - 0

+ 6v, then taking the limit 6v+0. Integrating by parts, and noting

that there cannot be an accumulation of particles in any volume

element, the result is:

(10.1)

The 6-space volume element used above is most easily found through

the pair of transformations (R,z,v,n) + (B,~,v,n) + (~,~ .,v,~),. x

yielding

(10.2)

where the Jacobians are

(10.3)

(10.4)

Combining (10.2) - (10.4), d3vd3x can be written as:

(10.5)
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where J is the 'net' Jacobian of the transformation

J = 7TF (1+l;2)IB' ..B' I/B3 . (10.6)x ex ox x

The term (dT'/d~) is obtained from the bounce-time differential,

dT' = dT/
(

2e2
)

, where
ymv

~
_ 2e

J

x B3d~
-~ -+- 2
ymv ,10 F/B-VBI[l-B(l-l; )/2B ]

o/n x

(10.7)

10.1 Calculation of Integrals

Our calculations are performed as follows. First, a point in

(v,l;,~x) space, corresponding to a particular orbit, is chosen, so as

to lie outside the forbidden region defined by (8.4). Next, the

sequence of points, (~ ,Bo(~ ;V,l;,~ )), are calculated along thiso 0 x

orbit between ~ < ~ < ~. The value of ~ is found numerically asn - 0 - x n

the point at which the orbit in B-~ space crosses the (B-~)EQ curve

(c.f. Fig. 8.la). Third, for each point, (B ,~ ), the correspondingo 0

spatial coordinate,(R ,z ), is found numericallyby solving:o 0

(10.8)

and vd is the particle guiding-center drift velocity.
The extra

factor of two in (10.5) and in (10.7) is due to up-down symmetry in

! z. The remaining problem is to evaluate (10.1).
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using the non-linear equation solver HYBRD1[89J. Here, the poloidal

flux function for the equilibrium, ~ , is found by Lagrangian inter-e

polation of ~-values given on an (R.,z.) mesh. The equilibrium1 J
~

B-field, B = IB I is similarly found from [85J:e e

(10.9)

(10.10)

+

Also, at each spatial point on the orbit, B.VB is obtained:

(10.11)

and used to evaluate the integrand of (10.7). Finally, the bounce-

averaged quantities 8 and U in (10.1) are determined numerically

(see Appendix E).

10.2 Results

Figure 10.1 shows contours of constant Tb in (~x'~) space for

3.5-MeV alphas in a D-shaped tokamak reactor having S = 0.8%. In

comparing this to Fig. 8.lc, all the features of the phase space

topology are present. The prominent aspects include the absence of

orbits in the forbidden region (blank portion about ~ = 0 and near
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Figure 10.1 Contours of constant bounce time, Tb(~s), in (~X'S)
space for 3.5-MeV alphas in a D-shaped tokamak equi-
librium (S=0.8%).

107



108

~ /~ = 0), Lb ~ 00 along the left-hand side of the forbidden regionx e

(for counter-going, x-type stagnation orbits, curve BCD in Fig. 8.1c),

the transition to finite Lb at the end of the pinch locus (point H

in Fig. 8.1c), and the transition to finite Lb at the x-type to

o-type stagnation-orbit transition (point B in Fig. 8.1c). Hinton

et. al. [98J have examined the transport for particles on or near

x-type stagnation orbits and found that a banana-plateau regime

model is required, since Lb ~ 00. Here, we assume that slowing down

drifts carry fast ions across such regions rapidly enough that the

contribution from plateau-like regimes is small. As expected, cir-

culating ions (s ~ I 1) have the shortestLb' since they circulate

along an average flux surface. The Lb-value for circulating orbits

(s ~ I 1) increases with increasing ~ because the distance that thex

ion travels around its average flux surface increases. Also, as

expected, Lb ~ l/v, even for 3.5-Mev alphas; this is because the

distance along the orbit, i.e. the connection length, is essentially

independent of v. These features of Lb in (~x'~) space thus rein-

. force the orbit topology concepts discussed in Chapter 8.

Another set of important results, which are readily calculated

at this stage, are the flux-surface-averaged source rates for alpha

density and current. At the birth energy, (9.1) becomes:

(10.12)
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from which the flux-surface-averaged alpha source rate, <n > is:a

.

<n >
a J

af

l

3 3
If

3
f

~ 3 3
= at d vd x d x = 3d vd x

Vo

(10.13)

and the parallel component of flux-surface-averaged alpha current

ra te, <j II >, is:

.

f

af

I

3 2
If

2
f

d3 d3
<JII>= at. eVlld vd x d x = s eVll v x

Vo

(10.14)

1JJ2 1JJ2

The integrals f d3x and f d2x are the volume and area, respectively,

1JJl 1JJl

2

between the flux surfaces labelled by 1JJland 1JJ2,where d x = dRdz =

d3x/2nR. The corresponding integral over d3vd3x also requires that

the d1JJpiece have the limits f1JJ2(~~) d1JJ,with a point-wise source
1JJl

ra te, 3:

(10.15)

Making these substitutions into (10.13)-(10.14) yields:

(10.16)

(10.17)
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These integrals have been evaluated numerically with an error of ~ 1%

using 128x128 equal intervals in (~ ,s) space. We assume a 50-50x

O-T plasma with parabolic density profiles:

The temperature is self-consistently determined from the pressure

profile, p(~), used to determine the equilibrium:

p (~) / 4kn . (~) ,1 (10.19)

where k is the Boltzmann constant. The electron density, n , ise

taken asne = 2nD; the electron temperature is assumed equal to the

ion temperature, T.. The central temperature was taken at 15 keV,1

and the corresponding n determined from (10.19), with <crv> takeno

from Ref. 32.

Figure 10.2 shows <n > versus ~/~ d for two O-shapeda e ge

equilibria (See Table 10.1). For comparison, the ~oint-wise source

rate, na = nln2<crv>12' is also plotted. The particle source rate

difference, £, is given in Table 10.1 for each case, where

(10.20)

Since £. ~ 5% for these cases for ~/~edge ~ 0.4, it is concluded that

the "in-situ" deposition model is adequate for determinations of the

total (ion+electron) interior heating. This is because the heating
.. 2

rate goes like E - E <n >, where E = ~ mv .o a 0 0
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Figure 10.2 Flux-surface-averaged particle source rate, <n >,
and current source rate, <jn>' for 3.5-MeV al-a.
phas in D-shaped ETF equilibria (see Table 10.1).
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Table 10.1. Non-Circular Tokamak Parameters

Low S Medium B

l3 0.008 0.075

Sp(a)
0.389 2.688

q(a) 3.207 3.353 I gi ven from
equilibrium

Jpl(MA)
5.78 5.95 ( data

B (T) 5.3 4.3
0

R (m) 5.035 5.356
0

ljJedgWb)
3.675 2.985

E(%) 4.7 5.4

---- < ill > UA/ s ) 0.021 0.81 I calculated

LS(S) 0.9 0.1

(
in

present

L <i >(MA) 0.02 0.08
work

s II
*

<I >(kA) 6.3 26.
II-

*
For a discussion of convergence of <III>' see Appendix G.
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Figure 10.2 also shows <j > versus ~/~ dg
, with the values

II e e

of <1> given in Table 10.1. Small banana-width models are in-II

adequate to describe this current, which is a large banana-width

effect. McNally [90J has previously estimated the alpha-driven

current using scaling arguments. However, for the purposes of this

section, the current is estimated as the current source rate times

the characteristic slowing time:

I
II

.
<I > T

II S (10.21)

where T is the momentumslowing downtime (cf. eqn. 11.11). Thes

corresponding estimates for sample cases are given in Table 10.1.

In Chapter 11, we improve on this estimate by calculating <I > as
II

the first moment of the slowing down distribution.


