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8. SLOWING-DOWNIN NON-CIRCULARTOKAMAKS

To fully describe the collisional slowing-down of fast ions

in non-circular tokamaks, the formulation of Chapter 7 has been

extended to include large banana-width effects.

8.1 Previous Work

Fast ion dynamics have been studied extensively in the small

banana-width limit. In the so-called "retardation theory" [1,47,

52-56J, energetic ions are viewed as test particles undergoing

collisional relaxation in a uniform background plasma. Ion and

electron heating rates are obtained from the "instantaneous heating"

or "in-situ" deposition model (for example, see Refs. 57-58) by

assuming that the energy relaxation time is nearly zero, and thus

all the energy is deposited on the flux surface where the particle

is born. Numerous workers [18,45,59-76J have calculated fast ion

distributions using the small banana-width, bounce-averaged Fokker-

Planck equation, including the effects of speed-diffusion, pitch-

angle scattering, the velocity-space loss-region, toroidal elec-

tric field, impurities, charge exchange, and time delay in heating

due to finite slowing down time. Trapped particle contributions

have been examined analytically by Cordey [45J and via Monte Carlo

calculations by Killeen et al [77J and Goldston [99J, yielding

inward (outward) slowing-down drifts (relative to the plasma center)

for co-(counter) going ions. (The present work finds that these



results need clarification; see Chapter 11.) The additional ef-

fect of large energy transfer (LET) interactions has been modeled

by the multi-groupmethod [78-80J and by quantum mechanics, in-

cluding nuclear and coulomb scattering plus spin [81J. However,

for alpha particles, LET effects are small for T. ~ T $ 20 KeV,1 e

as inferred from Figs. 4-5 of Ref. 82. Still, the above models

are inadequate for describing alpha particle effects because the

small banana-width approximation is used.

More recently, the detailed properties of large banana-width

orbits have been studied [4,13,16-17,35,54,117J, and corresponding

neoclassical transport models developed. The early attempts to

model a. heating used only the initialorbits ("singleorbit" ap-

proximation), described as circles [15J and as finite width

bananas [83J. Later, Petrie and Miley [8J calculated alpha power

deposition using a spatial- and phase-group method to follow the

evolving guiding-center orbits during the slowing-down process.

In the light of the present work, the drifts obtained by Ref. 43

are consistent with Refs. 29-30 (see Ch. 11). Ohnishi et al. [35J

examined alpha losses to the first wall during slowing down and

pitch-angle scattering using a Monte Carlo Technique. Recently,

Mikkelsen and Post [84J have developed a Monte Carlo alpha heating

code, including first-orbit losses, finite slowing down time, and

orbit drifts. Using these techniques, it is relatively easy to

obtain moments of the disbribution function because integration
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smooths out discrete particle effects, but large amounts of com-

puter time (because of slow numerical convergence) are required to

find the distribution function itself (for comparison with charge-

exchange data). In all the studies cited here, anamolous slowing

effects (e.g. Refs. 2 and 33) are ignored.

The present work is based on classical slowing down, which

has been well tested by neutral injection experiments at energies,

E $ 100 keV. More recently, fusion-produced tritium (E $ 1 MeV)

experiments in PLT [100] have demonstrated thermalization consis-.

tent with the classical model. Since fast ion transport scales [4J

like the (charge)j(momentum), the l-MeV T results apply to 3.5-MeV

alphas as well (c,f. eqn. 2.9).

The present method consists of bounce-averaging the Fokker-

Planck equation after the variables have been transformed to the

three constants-of-motion (COM)which characterize the orbit of a

collisionless particle [13J. This is the only treatment, known to

us, that accurately describes fast ion orbits and their distribu-

tion function in realistic, high-S, non-circular equilibria like

those of Ref. 85. However, Mikkelsen and Post can do such calculations

in principle. Recently, Kolesnichenko and Yavorskii [113J have

modeled 3.5-Mev alpha losses from non-circular tokamaks, but they

did not study slowing down effects. In addition, our model treats

first-orbit losses, trapping effects and slowing-down drifts. The

COMapproach doe.s find the distribution function, and since a 3-D

(+ time) equation is solved, it is possible to derive scaling laws.
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8.2. Guiding-Center Equation

Three constants-of-motion (COM)are required to fully des-

cribe the guiding-center motion of a collisionless particle in an

axisymmetric tokamak. The usual COMare E (the energy), ~ (the

m~gnetic moment), and P~ (the toroidal conanical angular momentum),

but thi s set is i nconveni ent for our problem. Fo11owing Romeand

Peng [13J, we pick v (the ion speed), ~ (the maximumvalue of thex

poloidal flux function along the guiding-center orbit, where ~ is

increasing from the magnetic axis), and s(the cosine of the angle

between the parallel component of plasma current and the ion

velocity, i.e. s = juov/(IJ,I Iv) at ~x)' The remainder of this

chapter summarizes the pertinent results of Ref. 13, which will

then be applied to the present problem.

First to be considered are the COMin terms of E, ~, and P~,

from which the guiding center motion can be derived. The toroidal

canonical angular momentumis conserved through first order in

gyroradius [86J when written in terms of guiding-center coordinates.

Assuming ideal MHD equilibrium [85J, P~ can be written in mks units as:

P~ = mvy~F/B - Ze~ = mVYsFx/Bx- Ze~x' (8.1)

where m and Ze are the ion mass and charge, l/y = 1l'-(v/c)2,

c = speed of light, F = F(~) = RB~. Also, ~ is the cosine of the

local pitch angle (i.e. ~ = juov/(I~llv) evaluated at ~), and the

subscript "x" in (8.1) denotes evaluation at ~. A cylindricalx

coordinate system (R,~,z) is used. Quantities obtained from
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the MHD equilibrium [85J include: the poloidal flux function, ~,

the magnitude of the magnetic field, B, the function F(~), and

their derivatives. The magnetic moment can be rewritten in terms

of these same variables, yielding:

2 2
(l-s )/B = (l-ll )/B.x (8.2)

Rewriting (8.2), the parallel velocity at any point on the orbit

is v = Vll = fvvll-(1-s2)B/Bx' which can be substitutedinto (8.1)

to obtain the orbit equation, B = B (~):o

B = Bx/ {Yz(1-s2) +

(1-IJi/~x)J2}}

(8.3)

where the dimensionless constant, G = ZeB ~ /mcF. Picking the COMx x x x

coordinates (v,s,~ ) uniquely defines an orbit, which is parameterizedx

by ~ over the interval ~ < ~ < ~ .n - - x

~ on the orbit.

Here, ~ is the minimum value ofn

There is a one-to-one correspondence between the spatial

coordinates (R,z) and the (B,~) coordinates of the guiding center.

Here, the B = constant and ~ = constant surfaces constitute a non-

orthogonal system which can be inverted to find (R,z). This is

particularly difficult in the equatorial plane (z=O) where the B-

and ~- surfaces are parallel. To establish the allowed domain in

B-~ space for all possible orbits, we first plot (see Fig. 8.1) B



89

1.0
FSL- 80-1!!

0.8

2.~

2.0
3

0.2 0.5

0.6
B

BIN
0.4

(B-"'>OUT 1.0

C COUNTER PINCH Z (m)
X COUNTER CIRCULATING
+ CO CIRCULATING 1.0
o BANANA ORBIT
A PINCH ORBIT

0.0 I (0)
0.0 0.2 0.4 0.8 0.8

tl""d,.

0.0
1.0 3.0'1

PINCH
POINT

1.0 r -Ij

lit. 0.5
lIt'd,.

'///////- FORBIDDEN REGION

\~:':'.'i:~I)} TRAPPED REGION-.- PINCH LOCUS- O-TYPE STAGNATION

-+-+-+- X -TYPE STAGNATION

--- LOSS 80UNDARY

Figure 8.1 The correspondence between orbits in (a) (B,~) space and
(b) configuration (R,z) space (taken from Ref. 13), with
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along the equatorial plane versus ~ (normalized to the ~-va1ue at

the plasma edge, ~edge). In Fig. B.1a, the curve segment between

points 1 and 2, labelled (B-~)IN' is obtained from Fig. 8.1b by

moving (on the equatorial plane) from point 1 (at the inboard

edge of the equilibrium) to point 2 (at the magnetic axis).

Similarly, in Fig. 8.1a, the curve segment between points 2 and 3,

labelled (B-~)OUT' is obtained from Fig. 8.1b by moving from

point 2 to 3 (at the outboard edge of the plasma). Particle orbits

move monotonically in ~, intersecting the (B-~)EQ curve (composed

of (B-~)IN and (B-~)OUT) usually only twice: at (Bx'~x) and at

(B ,~). Several examples of orbit trajectories in B-~ space aren n

shown in Fig. 8.1a with the corresponding configuration space orbits

in Fig. 8.1b[13]. The sequence of co-going orbits (evolving from

co-circulating to pinch, trapped, and o-type stagnation) is ob-

tained by decreasing s from +1, for a fixed value of ~ on the out-x

board side of the magnetic axis. The corresponding points in ~ -sx

phase space (v = constant)' are shown in Fig. 8.1c. Similarly, the

sequence of counter-going orbits (evolving from counter-

circulating to counter x-type stagnation) is obtained by increasing

s from -1, for a fixed value of ~ on the inboard side of thex

magnetic axis.

The COM-space topology in the v = constant plane, is shown in

Fig. 8.1c. The boundaries (loss, stagnation orbit) and regions

(forbidden, trapped particle) determine the transport mechanisms for
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fast ions. Consequently, the detailed features of the (v,s,~ )x

space are examined next.

8.3 Stagnation Orbit Boundary

The stagnation orbits (the counter x-type and o-type stagna-

tion) occur when the (B-~) orbit trajectory is tangent to (B-~)EQ
at ~ :x

2B S

~

SF1 G c

)B1 - B1 - X X x
ex - ox - 1+s2 ~ - vy~x

(8.4)

Here, B'ex

field in

indicates the ~-derivative (at ~ ) of the equilibriumx

the equatorial plane; B1 is the ~-derivative of the orbitox

o-type stagnation orbit (a 'point' orbit

occurs when the curvature and BX9B

equation (8.3) at. ~x' The

in both B-~ and R-z space)

drifts exactly cancel the poloidal motion along a field line. In

Fig. 8.1c, the boundaries ABCDand FG are given by (8.4). The

region between these two boundaries is forbidden; corresponding

orbits in (B-~) space lie below (B-~)OUT or above (B-~)IN and thus

do not constitute physically realizable trajectories in (R-z) space.
+ + +

Since orbits can also be labeled by v'~n' and A = (JI/ov)/(IJI/I v)

at ~ , the forbidden region also serves to make the labeling uniquen

by grouping all the ambiguous points associated with (V,A,~ ) inton

the forbidden region.



92

The second important internal boundary is the locus of pinch

orbits (line HI in Fig. 8.lc), occurring when the (B-~) b
'
t

tra-
or 1

jectory is tangent to (B-~)EQ at the pinch point, ~p and is given

by:

2B2B'F (~ -~ )[(l-~ /~ )(2B F1-F BI) + 2B F J}
x P P x P P x P P P P P P

+ {B BIF (l-~ /~ )J2 = 0x p p p x (8.5)

and

(8.6)

The subscript Ipl indicates evaluation at the pinch point (see Figs.

8.la-b). As before, primed variables are derivates with respect to

~. Equation (8.5) is solved by choosing a point (B ,~ ) in thex x

equatorial plane (outboard side), then searching (numerically)

(8.7)

from which s is found using (8.6). Note that the minus sign is used

through values of (B , ) lying in the equatorial plane (inboardp p

side). The corresponding value of n2 is given by solving the bi-p

quadratic equation (8.5), cln + c2n + c3 = 0:
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in (8.7) so that In I < 1. The search is successful when thep -

desired value of v/c is obtained from

u = ~-c - (8.8)

with v/c = u /~ . (8.9)

The end of the pinch boundary (point H in Fig. 8.1c) is found when

the inner (counter-going) loop of the x-type stagnation orbit shrinks

to a poi nt (1/1-+1/1n p

in the equatorial

at point B in Fig. 8.1c) and occurs when B~p =
plane (inboard side). The resulting condition is

I 4
clnpe

B"
op

a biquadratic in n (the cosine of the pitch angle at 1/1 ),p P
2

+ c'n + cl = 0:
2 pe 3

n4 [4F"/F -4BIFI/B F -2B"/B +3(B'/B )2J
pe p p p p p p p p p p

(8.10)

+n2 [6(B'/B )2-2B"/B -4B'F'/B F J
pe p p p p p p p p (B1/B )2 = ap p

which has the solution:

cl
2

(8.11)
2c'1

As before, the minus sign in (8.11) is required for In I < 1.pe -
It is necessary to (numerically) search for the value of 1/1 which

p

produces the desired value of v/c from (8.9) and:



94

u = yv = G 11 / [112 F I / F - 12(l +112 ) BI / B J.
c p pe pe p p pe p p (8.12)

The corresponding values of ~ and s are found by searching forx

the ~ crossing via the orbit equation:x

(8.13)

where G = ZeB ~ /mcF .
p p p p

8.4 Connectivity of Orbit Topology

. The next important feature of the orbit topology is the con-

nectivity of the two halves of phase space via scattering across the

pinch orbit. Figure 8.2 illustrates the ways that scattering occurs

among orbits adjacent to the pinch orbit. The arrows, labelled 1 in

Figs. 8.2a-b, correspond to scattering from a counter x-type stag-

nation orbit (...), across the pinch orbit (--), to a fattest-banana

(-'-). The arrows, labelled 2, denote scattering from a fattest

banana (-. -), across the pinch orbit to either a counter x-type

,stagnation (...) or to an outermost kidney (--) orbit. Finally, the

arrows, labelled 3, indicate scattering from an outermost kidney

orbit (--), across the pinch orbit (-), to a fattest banana (-'-).

It will be necessary to account for all these processes, in the

solution for alpha slovling down, by conserving the resultant velocity-

space particle fluxes.
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Figure 8.2 The pinch orbit in (R,z) space, together with neighboring
orbits is shown in (a). The corresponding directions of
the particle fluxes in (~ ,s) space is depicted in (b) for
v=constant. x
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8.5 Loss Boundaries

The last important feature is the loss boundary (lines CDEand

FIJ in Fig. 8.1c). Losses occur when an orbit intersects the wall at

~ , yielding ~ > ~ as the condition for the boundaries DE and FIJw x - w

in Fig. 8.1c. Particles which drift or scatter across the boundary

CD, in Fig. 8.1c~ are also lost to the wall. This corresponds to an

orbit evolving from counter-circulating~ to counter x-type stagnation

(the inner loop of a pinch)~ to banana (arrow 1 in Fig. 8.2). It is

the trapped orbit (fattest banana), which has ~ > ~ and causes thex w

particle to be lost to the wall.


