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9. FOKKER-PLANCK EQUATION OF SLOWING DOWN

Here, we find the distribution function in non-local co-
ordinates, (v,c,wx), meaning that particles are assigned to an orbit,
rather than the distribution function being given at a local point
in configuration- and velocity-space. It is then possible to des-
cribe the evolution of the orbits (e.g. slowing down), assuming the
slowing-down time, Tgo is long compared to a bounce time, Ty -
Beginning with the drift-kinetic equation, and expanding in multiple
time scales as done in Ref. 18, we obtain a bounce-averaged, drift-

kinetic equation on the T, time-scale:
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The bounce average on the RHS of (9.1) includes all the large banana-
width effects. (The details of evaluating these bounce integrals are
described in Appendix E.) Here, C is the Fokker-Planck operator,
which is time-averaged around an entire bounce orbit (i.e. bounce
averaged), and s is the fast ion source. The particle flows in (9.1)
arise from collisions and from the electric field, E, associated
with the ohmic heating current. The collision operator, C(f), is

a function of the local variables, (R,z,v,n) <> (B,b,v,n), while f

is Tabelled non-locally by the COM variables (v,g,wx). To use

(9.1), it must be transformed into the COM space.
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9.1 Transformation of Collision Operator

The Fokker-Planck operator used here describes fast ion
binary encounters with the background plasma. Fast ion inter-
actions with themselves are neglected since the fp density is much
less than the background density. Further, assuming azimuthal
velocity-space symmetry for a 1/r2 force-law allows the Rosenbluth-

MacDonald-Judd form [87] of the collision operator to be written as:
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where G and H are the Rosenbluth potentials:
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The index, o, indicates a sum over all background species, with
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The local derivatives in (9.2) must be transformed to COM coordi-

nates using the chain rule:
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where the subscripts indicate the variables held constant during

differentiation.

Substituting (9.6) - (9.7) and (8.2) into (9.2) gives:

\
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where the coefficients A1 are:
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The derivatives in the chain rule are found by taking g%- and
Byv

of (8.1) and (8.2), then solving the resulting pairs of 2

Bin
equations in 2 unknowns for 3z/9n, wa/an, 9z/3v and wa/av:

Ll
oV
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The result of this transformation into the COM space is a 3-
dimensional, second-order, partial differential equation (PDE) with
only the coefficients being bounce-averaged. In contrast, without

bounce-averaging, the result is a 4-dimensional, second-order, PDE.

9.2 Simplifying Assumptions
To examine 3.5-Mev alpha particle slowing-down, several addi-
tional approximations are possible. Speed-diffusion is important

for energies above the initial alpha energy and when:
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)13 (m /mi)2/3z 2/ 957 A 2/3 (9.18)

Eg/Ey & A 7 off f

Both Timits are unimportant for plasma heating by alphas so speed-
diffusion is neglected. In fact, Cordey [65] finds the correction
due to speed-diffusion to be -~ Ti/Eo’ which is a negligible correc-
tion (< 10_3) in this problem. Charge-exchange losses due to im-
purities could be signfficant [88], however the reactor-grade

plasmas of interest here require that zeff (and thus such impurities)
be minimized: zeff ~ 1-2. Consequently, charge exchange losses are
neglected because the cross sections are very low for MeV alphas

in hydrogenic plasmas. Also, the pitch angle scattering term is
small for low Zeff and v > Vs where Ve is the speed at which the

slowing drag due to ions equals that due to electrons, with EC =
> mvg ~32.1 T, for a's in a 50-50 D-T plasma (c.f. eqn. 4.13 of
Ref. 18). For these purposes, by the time alphas have slowed to

E < Ec’ 90% of their energy has been deposited in the plasma, so the
scattering contribution is also dropped. Petrie and Miley [8] have
explicitly evaluated the contribution due to pitch-angle scattering
and found it to be small. Electric field effects are important

only for circulating particles after a large number of bounce
periods: Nb ~ TS/Tb =~ 105. This corresponds to energies,

Nbe® < 105 eV, where ® is the toroidal loop potential driving the

ohmic current, which is also insignificant for heating calculations.

The simplified form describing the alpha slowing-down becomes:
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where U = - (vz %g-+ %%), and the bounce-average, 5, of some quantity,
Ps 55 0 = é dtD. While low Z was assumed in deriving this last
Ty eff

equation, all the terms in (3.19) are rigorously independent of Zeff‘
The resulting 3-dimensional first-order partial differential equa-
tion, together with the boundary conditions, in (v,g,wx) space 1is

straight-forward to solve.



