
 

NUCLEAR ENERGY RESEARCH INITIATIVE (NERI) 
 
 
 

Forewarning of Failure in Critical Equipment at Next-Generation Nuclear Power Plants 
NERI Project #2000-0109  

FINAL PROJECT REPORT 
(DRAFT of ORNL/TM-2003/222) 

 
 
 
 

Submitted by: 
Lead Organization: Oak Ridge National Laboratory 

Lee M. Hively 
Vladimir A. Protopopescu 

 
 
 

Collaborating Organization: Pennsylvania State University, Applied Research Laboratory 
Karl M. Reichard 

Kenneth P. Maynard 
 
 
 

Submitted on (Project Completion): 
24 October 2003 

 
 
 
 
 
 
 

Disclaimer: Any opinions, findings, and conclusions or recommendations expressed in this material 
are those of the authors and do not necessarily reflect the views of the Department of Energy. 

 
 
 
 

 



 2

Executive Summary 
 
Title:  Forewarning of Failure in Critical Equipment at Next-Generation Nuclear Power Plants 
Investigator:  Dr. Lee M. Hively (Oak Ridge National Laboratory, Oak Ridge, TN) 
Collaborators: Duke Engineering and Services Inc.; Pennsylvania State University 
Project #   00-109 
Start Date:   18 August 2000 
End Date:   30 September 2003 
 
The objective of this project is forewarning of machine failures in critical equipment at next-generation 
nuclear power plants (NPP). Test data were provided by two collaborating institutions: Duke Engineering 
and Services (first project year), and the Pennsylvania State University (Applied Research Laboratory) 
during the second and third project years. New nonlinear methods were developed and applied 
successfully to extract forewarning trends from process-indicative, time-serial data for timely, condition-
based maintenance. Anticipation of failures in critical equipment at next-generation NPP will improve the 
scheduling of maintenance activities to minimize safety concerns, unscheduled non-productive downtime, 
and collateral damage due to unexpected failures. This approach provides significant economic benefits, 
and is expected to improve public acceptance of nuclear power. 
 
The approach is a multi-tiered, model-independent, and data-driven analysis, which uses ORNL’s novel 
nonlinear method to extract forewarning of machine failures from appropriate data. The first tier of the 
analysis provides a robust choice for the process-indicative data. The second tier rejects data of 
inadequate quality. The third tier removes signal artifacts that would otherwise confound the analysis, 
while retaining the relevant nonlinear dynamics. The fourth tier converts the artifact-filtered time-serial 
data into a geometric representation, which then is transformed to a discrete distribution function (DF). 
This method allows for noisy, finite-length datasets. The fifth tier obtains dissimilarity measures (DM) 
between the nominal-state DF and subsequent test-state DFs. Forewarning of a machine failure is 
indicated by several successive occurrences of the DM above a threshold, or by a statistically significant 
trend in the DM. This paradigm yields robust nonlinear signatures of degradation and its progression, 
allowing earlier and more accurate detection of the machine failure.  
 
Project-year-1 (PY1) results were as follows. Long-term failure monitoring of operational equipment 
was not feasible within the scope of this project, since such failures typically take years to occur. Instead, 
data were acquired from a motor-driven pump for two test sequences, initially in nominal operation and 
subsequently with progressively larger (seeded) faults. Specifically, the experimenters carefully added 
larger amounts of mass imbalance in one test, and increasing misalignment between the motor and pump 
in the second test. ORNL’s nonlinear measures of condition change correlated well with the experimental 
level of vibration, both below and above the applicable international standards (ISO 2372 and ISO 3945). 
The work included a robust implementation of the nonlinear analysis on a desktop computer, not unlike 
hat for use at an advanced nuclear reactor.  t

 
PY2 results involved acquisition and analysis of additional test data, as summarized in Table 1. Some test 
sequences involved seeded faults (denoted by ‘S’ in Table 1), with the equipment initially in nominal 
operation, and subsequently with successively larger (controlled) faults. A second class of accelerated 
failure tests (denoted by ‘A’ in Table 1) likewise began with nominal operation. The over-stressed 
equipment subsequently experienced a gradual (uncontrolled) degradation, and ultimately failed. For 
example, the gearbox failed by the breakage of one or more gear teeth. Table 1 also shows the type of 
diagnostic data that was analyzed for failure forewarning. Electrical motor power was obtained from the 
three-phase motor currents and voltages. Vibration power was obtained from tri-axial acceleration data to 
capture the dynamics from all three acceleration directions. ORNL’s patented nonlinear measures show 
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clear change, as the tests progress from nominal operation, through degradation to failure for all nine PY2 
test sequences. (Conventional statistical measures and traditional nonlinear measures give little if any 
forewarning.) This work also yielded a statistical criterion that distinguishes between the gradual rise in 
dissimilarity measures and the abrupt (additional) increase that gives forewarning of failure. 
 

Table 1: Summary of Test Sequences 
------------------------------------------------------------------------------------------------------------------------------- 
Data Provider  Equipment and Type of Failure    Diagnostic Data   PY  
1) EPRI (S)   800-HP electric motor: air-gap offset  motor power   2 
2) EPRI (S)   800-HP electric motor: broken rotor   motor power   2 
3) EPRI (S)   500-HP electric motor: turn-to-turn short motor power   2 
4) Otero/Spain (S) ¼-HP electric motor: imbalance    acceleration    2 
5) PSU/ARL (A) 30-HP motor: overloaded gearbox   load torque    2 
6) PSU/ARL (A) 30-HP motor: overloaded gearbox   vibration power   2 
7) PSU/ARL (A) 30-HP motor: overloaded gearbox   vibration power   2 
8) PSU/ARL (S) crack in rotating blade      motor power   2  
9) PSU/ARL (A) motor-driven bearing      vibration power   2 
10) EPRI (S)  800-HP electric motor: air-gap offset  vibration power   3 
11) EPRI (S)  800-HP electric motor: broken rotor   vibration power   3 
12) EPRI (S)  500-HP electric motor: turn-to-turn short vibration power   3 
13) PSU/ARL (A) 30-HP motor: overloaded gearbox   vibration power   3 
14) PSU/ARL (A) 30-HP motor: overloaded gearbox   vibration power   3 
15) PSU/ARL (A) 30-HP motor: overloaded gearbox   vibration power   3 
16) PSU/ARL (A) 30-HP motor: overloaded gearbox   vibration power   3 
17) PSU/ARL (S) crack in rotating blade      vibration power   3  
------------------------------------------------------------------------------------------------------------------------------- 
 
PY3 results involved acquisition and analysis of additional test data, as summarized in Table 1. Items 10-
12 during PY3 involved analysis of vibration power, while Items 1-3 during PY2 used electrical motor 
power from the same test sequences. Items 13-15 involved the same test apparatus and protocol as Items 
5-7 to acquire additional test sequences. The PY3 results for Items 10-16 showed clear forewarning 
reproducibility. In particular, four accelerated tests of gearbox failure gave end-of-life forewarning at 93.8 
– 98.5% of the final failure time, as well as indication of the failure onset at 99 – 99.8% of the final 
failure time. The present results show no false-negative indications (lack of forewarning when a change 
actually occurred), and no false-positive forewarnings (forewarning when no change really occurred). 
These results provide compelling evidence for forewarning of failures via the ORNL nonlinear paradigm. 

e also find that accurate forewarning can markedly reduce failures and improve cost-effectiveness. W
 
Products of this work include U.S. Patents, patents pending, technical publications, oral presentations, 
software implementation of the nonlinear technology, a cost-benefit analysis of the prognostication 
approach, and a commercialization roadmap. There are no software deliverables for this project. The 
ORNL nonlinear forewarning technology has substantial intellectual property protection in the form of six 
U.S. Patents and two patents pending. Two of these six patents were obtained during this NERI project, 
including an objective statistical test for the end-of-life forewarning and the failure onset indication. Both 
of the patents pending were submitted to the U.S. patent Office during this NERI project to protect ideas 
that arose from this work. No licensing agreements presently exist for use of these patents. We have 
published six technical r
on 30 September 2003. 

eports and four oral presentations on this NERI work. The work was completed 

 



 4

NERI Quarterly Progress Report 
Forewarning of Failure in Critical Equipment at Next-Generation Nuclear Power Plants 

NERI Project #2000-0109 
Final Report 

 
I. Technical Narrative 
 
This project began in August 2000, and has three tasks. The first project year addressed Task 1, namely 
development of nonlinear prognostication for critical equipment in nuclear power facilities. That work is 
described in the first year’s annual report.  The second project year (FY02) addressed Task 2. The third 
project year addresses Tasks 2-3. This report describes the work status for the third (and final) project 
year, spanning August 2002 through September 2003, including the status of the tasks, issues/concerns 
for each task, cost performance, and status summary of tasks. 
 
The objective of the third year’s work is a compelling demonstration of the nonlinear prognostication 
algorithm via additional data and assessment of the economic impact of that prognostication. While long-
term monitoring of operational utility equipment is possible in principle, it was not practically feasible for 
the following reason. Time and funding constraints for this project did not allow us to monitor the many 
components and machines (thousands) that will be necessary to obtain even a few failure sequences, due 
to relatively low failure/fault rates (<10-3/year) in the operational environment. Consequently, we 
obtained controlled failure sequences by seeding progressively larger faults in test equipment. This 
method is the only way to guarantee a known, well-documented fault that leads to failure, but in general 
is infeasible for operational utility machinery. During the second project year, we also used accelerated 
failure testing, which eventually results in equipment breakdown, but in a less controlled fashion. Our 
subcontractor, Applied Research Laboratory at the Pennsylvania State University (PSU), provides test-
sequence data, which Oak Ridge National Laboratory (ORNL) subsequently analyzes for prognostication. 
Recognizing the inherent constraints outlined above, ORNL contacted other researchers for additional 
data from a variety of test equipment. Consequently, we have revised Task 2, with corresponding changes 
to the work plan as shown in the Status Summary of NERI Tasks (below).  
 
Task 2.1: ORNL will obtain test data from PSU/ARL and other researchers for various test equipment. 
This task includes development of a test plan or a description of the historical testing, as appropriate: test 
facility, equipment to be tested, choice of failure mode, testing protocol, data acquisition equipment, and 
resulting data from the test sequence. ORNL will analyze this data for quality, and subsequently via the 
nonlinear paradigm for prognostication.  
 
Task 2.2: ORNL will evaluate the prognostication capability of the nonlinear paradigm. The comparison 
metrics for reliability of the predictions will include the false positives, false negatives, and the 
forewarning times. 
 
Task 2.3: ORNL will improve the nonlinear paradigm as appropriate, in accord with the results of Tasks 
2.1-2.2, to minimize the number of false positive and false negative indications of failure, while 
maximizing the forewarning time. (See App. A for details for the analysis methodology.) 
 
Task 2.4: ORNL will develop advanced algorithms for PS-DF pattern change recognition, based on the 
results of Task 2.3.  This implementation will provide a capability for prognostication, as a component of 
he long-term need for real-time maintenance decision-making. t

 
he third phase of this work involves evaluation of the nonlinear paradigm, as described in Task 3. T
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Task 3.1: This task will compare the economic and safety improvements for the nonlinear prognostication 
with previous efforts. Economic and quality gains will be documented.  
 
Task 3.2: This task will map the pathway to potential commercialization of the nonlinear prognostication 
technology. Extrapolation of gains to other advanced reactor equipment will be included. 
 
We obtained and analyzed archival data from the Electric Power Research Institute (EPRI) during the 
second year’s work of this project, as described in the FY02 annual report. EPRI published a report on 
that data and its analysis, “Electric Motor Predictive Maintenance Program,” TR-108773-V2 (1999). The 
EPRI report included analysis of the safety and cost benefits of predictive maintenance that served as a 
guide for Task 3. Specifically, forewarning of an imminent failure allows the operator to anticipate or 
avoid the failure, thus avoiding concomitant damage (maintenance savings), downtime, lost generation 
capacity, potential injuries, and their associated costs.  
 
Progress on Tasks 2.1 – 2.4 is described most easily for the acquisition and analysis of each sequence of 
test data, as described next. No issues or concerns exist for any components Tasks 2 - 3. 
 
IA. Additional Analysis of EPRI Motor Power Data for the Airgap-Offset Fault 
 
EPRI report # TR-108773-V2 (1999) included a CD-ROM of actual data from the testing. That work 
involved collaboration by several utilities and EPRI on seeded faults in large electric motors. The datasets 
were recorded in snap-shots of 1.5 seconds, sampled at 40 kHz (60,000 total time-serial samples), 
including three-phase voltages and currents, plus tri-axial accelerations at inboard and outboard locations 
on the motor. Several anomalies were introduced in the motors to simulate the most common pre-failure 
in-service conditions. ORNL has received data via the CD-ROM that accompanied the EPRI report for 
three different seeded faults. The specifications of the first motor were as follows. 
 
 Manufacturer:  Allis Chalmers      Bearing type:   sleeve 

ps  Rated voltage:  4160        Nameplate current:   100 am
 Rated HP:   800         Number of rotor bars:  94 
 Winding type: form wound      Number of stator slots: 40 
 Phases:   3         Hertz:     60 
 RPM:   710         Motor type:    induction 

Enclosure:  TEFC        Bar configuration:  copper 

 the stator. These offsets 
ere static, because neither varied relative to the stator with the motor running. 

voltages. This power has a slow, low-amplitude variation with a period of roughly 0.1s. We removed this 

 Insulation class: F         Poles:     10 
 
 
One test sequence began with the motor running in its nominal state (first dataset). Two different airgap-
offset seeded-faults then were imposed via preinstalled jackscrews. The second dataset involved an 
inboard airgap offset of 8 mils from the nominal value of 30 mils. The third dataset retained the first fault, 
and added an additional seeded-fault outboard airgap offset by 20% in the opposite direction from the 
inboard shift. This additional fault resulted in the rotor being skewed relative to
w
 
We reiterate the PY2 analysis from the PY2 annual report, as a motivation for additional PY3 analysis. 
The three datasets for this test were concatenated into a single long dataset. Figure 1 shows typical three-
phase voltages (Vi) and currents (Ii), which were converted into instantaneous motor power, P = Σi IiVi, 
where the sum runs over the three phases. The bottom subplot of Fig. 1 shows rich dynamical features in 
P, which are not present in the individual components of three-phase currents and voltages (upper six 
subplots). Consequently, we first analyzed the instantaneous power, rather than the individual currents or 
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artifact with ORNL’s novel zero-phase quadratic filter. Otherwise, this artifact confounds the 
interpretation of our results. We split each of the three datasets into five subsets of 12,000 points each, 
giving fifteen total subsets for analysis. This artifact-filtered data showed no data quality problems. A 
systematic search revealed a set of parameters for which the phase-space dissimilarity measures (PSDM) 
are most sensitive to the condition change for the airgap seeded-fault test sequence, as shown in Fig. 2. 
An almost linear rise occurs in the connected-phase-space dissimilarities (second from the top and bottom 
plots) from near zero for the nominal state to ~20 for the double-seeded air-gap fault. The rise in non-
connected dissimilarity measures is monotonic, but little changed between the two faulted states. 
 
We performed additional analysis of this seeded-fault airgap test sequence during PY3. This analysis is 
motivated by the fact that electrical power is the sum of products of the three-phase currents and voltages. 
In principle, condition change should be extractable from one or more of the individual three-phase 
currents and voltages in this linear combination. Consequently, we determined the PSDM for each of the 
three-phase currents and voltages separately, using the same parameters as Fig. 2.  Figure 3 shows an 
almost linear increase in U(χ2) for V1 (upper left subplot), and monotonic increases for the other three 
PSDM of V1 (left column). All four PSDM of V2 also increase monotonically (middle column of Fig. 3). 
Figure 3 also shows that U(χ2) for V3 (upper right subplot) increases monotonically, while the other three 
PSDM of V3 rise from test #1 to test #2, then decrease for test #3. Figure 4 shows roughly linear increases 
in all four PSDM of I2 (center column), and monotonic increases in all four PSDM of I3 (right column). 
All four PSDM of I1 increase from test #1 to test #2, then remain constant from test #2 to test #3. Figure 5 
shows the PSDM for each component of three-phase power, IiVi. All four PSDM of I2V2 (middle column) 
show an almost linear increase, and all four PSDM of I3V3 increase monotonically. All four PSDM of I1V1 
increase from test #1 to test #2, then remain constant from test #2 to test #3. Thus, we find that the PSDM 
can extract condition change from most of the three-phase currents and voltages separately, as well as 
from two of the components of three-phase electrical power. 
 
The EPRI data included tri-axial acceleration from inboard (IB) and outboard (OB) motor locations. 
However, the third component of the OB-acceleration failed the data quality check, due to initially small 
and erratic values, followed by an abrupt rise at 60 milliseconds to a flat-top value. This problem 
continues periodically through the data, thus precluding use of the OB-accelerometer for condition 
change. Our analysis indicates adequate quality for the IB-acceleration data, which we analyze next. Tri-
axial acceleration has an important advantage, as follows. Acceleration, a, is a three-dimensional vector 
that can be integrated once in time to give velocity (vector), v = ∫ a dt. Mass, m, times acceleration 
(vector) is force (vector), F = ma. The dot-product of force and velocity converts these vector quantities 
into power (scalar), P = F•v = ma•∫ a dt. Figure 6a shows a 20-millisecond segment of vibration power 
data with complex, nonlinear features. The corresponding statistical measures (Figs. 6b-6e) and 
traditional nonlinear measures (Figs. 6e-6g) do not provide a clear indication of the increasing severity of 
the seeded fault. Figure 7 shows that all four phase-space dissimilarity measures rise linearly with the 
increasing fault severity, thus yielding good change discrimination.  
 
B. Additional Analysis of EPRI Motor Power Data for the Broken-Rotor-Bar Fault I

 
A second EPRI test sequence began with the Allis Chalmers motor running in its nominal state (first 
dataset), followed by progressively more severe broken rotor bars. The second dataset involved a 
simulated failure that was one rotor bar cross section cut 50% in half at the 11 o’clock position. The third 
dataset was for the same rotor bar next cut through 100%. The fourth dataset was for a second rotor bar 
cut 100% at the 5 o’clock position, exactly 180° from and in addition to the first rotor failure. The fifth 
dataset was for two additional rotor bars cut adjacent to the original 11 o’clock bar, with one bar cut on 
each side of the original, yielding four bars completely open. Consequently, this sequence of seeded faults 
rises exponentially, as measured by the number of broken rotor bars (½ to 1 to 2 to 4). The EPRI report 
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notes that the data-collection personnel noted a definite growling sound and a pulsating vibration during 
the last test (four broken rotors). We concatenated the five datasets into a single long dataset for ease of 
analysis, and converted the three-phase voltages and currents into instantaneous power, as described 
above.  
 
We reiterate the PY2 analysis of this data, as motivation for the addition PY3 analysis. We split each of 
the five datasets into five subsets of 12,000 points each, giving twenty-five (25) total subsets. The 
electrical power has a slow, low-amplitude variation with a period of roughly 0.1s. As before, we 
removed this artifact, which otherwise confounds the interpretation of our results. A check of this artifact-
filtered data revealed no data quality problems. We systematically varied the phase-space reconstruction 
parameters to obtain the most monotonic increase in condition change for the broken-rotor seeded-fault 
test sequence. Figure 8 shows that the phase-space dissimilarity measures rise by ten-fold over the test 
sequence. The exponential rise in the seeded-fault magnitude (doubling from 0.5 to 1.0 to 2.0 to 4.0) is 
mirrored in Fig. 8 by a linear rise in the logarithm of the dissimilarity measures. 
 
We performed additional analysis of this seeded broken-rotor test during PY3. We focus on this analysis 
of vibration power only, based on the above results for the airgap test. As before, we reject the outboard 
acceleration due to the same data quality problem in the third component. Figure 9a shows a 20-
millisecond segment of vibration power data with complex, nonlinear features. The corresponding 
statistical measures (Figs. 9b-9e) and traditional nonlinear measures (Figs. 9e-9g) do not provide a clear 
indication of the exponentially-growing severity of the seeded fault. Figure 10 shows that all four phase-
space dissimilarity measures rise linearly with the increasing fault severity, thus yielding good change 
discrimination.  
 
IC. Additional Analysis of EPRI Motor Power Data: Turn-to-Turn Shorts 
 
The EPRI data included a General Electric motor, with the following specifications. 
   
 Rated voltage:  4000        Bearing type:   sleeve 
 Rated HP:   500         Number of rotor bars:  84 
 Winding type: form wound      Number of stator slots: 108 
 Phases:   3         Hertz:     60 

tion  RPM:   1185        Motor type:    induc
 Insulation class: B         Poles:     6 

Enclosure:  open        Bar configuration:  copper rectangular  
 
This test sequence began with the motor running in its nominal state (first dataset). The second dataset 
had a 2.70-ohm turn-to-turn short, via a large screw between two turns. The third dataset had a more 
severe, 1.35-ohm turn-to-turn, via a smaller screw between two turns. These three datasets were 
concatenated into a single long dataset for this analysis. The analysis sequence follows the increasing 
severity of the fault from the largest turn-to-turn resistance (infinite, corresponding to no short), to smaller 
(2.7 ohms), to smallest (1.35 ohms). We reiterate the PY2 analysis of this data, as motivation for the 
addition PY3 analysis. The three-phase voltages and currents were converted into instantaneous electrical 
power, as before. The three datasets were split into five subsets of 12 000 points each, giving fifteen (15) 
total subsets. This data has a low-amplitude, low-frequency artifact with a period of roughly 0.006s. We 
remove this artifact, which would otherwise confound the analysis. The artifact-filtered power data has no 
data quality problems. Systematic variation of the phase-space reconstruction parameters revealed values 
that are most sensitive to the condition change for the turn-to-turn seeded-fault test sequence. Figure 11 
shows that all four of the phase-space dissimilarity measures of electrical power rise linearly over the test 
sequence, mirroring the linear rise in the magnitude of the seeded faults (from 2.7 to 1.35 ohms).  
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We performed additional analysis of this turn-to-turn-short test during PY3, focusing on vibration power, 
based on the above results for the airgap test. The third component of outboard acceleration showed the 
same data quality problem as before, forcing its rejection. Figure 12a shows a 20-millisecond segment of 
vibration power data with complex, nonlinear features. The corresponding statistical measures (Figs. 12b-
12e) and traditional nonlinear measures (Figs. 12e-12g) show some consistency with the increasing 
severity of the seeded fault. The minimum (PN) rises and maximum (PX) falls (Fig. 12b) monotonically 
over the test sequence. Kurtosis decreases and skewness increases monotonically (Fig. 12c) over the test 
sequence. Linear increases occur in the average number of time steps per cycle (Fig. 12d) over a very 
narrow range (7.2-7.6), and the first zero in the autocorrelation function (Fig. 12e).  Figure 13 shows that 
all four phase-space dissimilarity measures rise linearly with the increasing fault severity, thus yielding 
good change discrimination. We obtained the results in Secs. IA – IC by searching over the range of 
parameters for the best indication of condition change: 2 ≤ d ≤ 26, 2 ≤ S ≤ 200, and 1 ≤ λ ≤ 100.  
 
ID. Motor Diagnostics Test Bed Data from the Pennsylvania State University 
 
Appendix B is the statement of work for the subcontract to the Applied Research Laboratory at the 
Pennsylvania State University. Appendix C is the test plan for the Mechanical Diagnostics Test Bed 
(MDTB). This subsection describes details of the data acquisition, the nonlinear analysis, and results of 
the forewarning assessment for each of three MDTB accelerated failure test sequences. Previous work 
during FY2 of this NERI project determined that higher sampling rates for the data give superior failure 
forewarning, and that accelerometer data was more appropriate for the MDTB testing. Work during the 
second quarter of the present project year verified the adequacy of the data quality and sampling rate. 
Consequently, the tri-axial accelerometer data were sampled for each MDTB test sequence in ten-second 
snapshots at a sampling rate of 52 kHz. Data quality analysis revealed no problems with the MDTB data. 
The protocol for this test involves a break-in period at the nominal (1X) load (per the test plan in App. C) 
for one hour, followed by twice (2X) the normal load until failure; our analysis uses the test data only 
during the overload period. Figure 14 shows the specific end-of-life failure for MDTB Run #36, including 
pinion damage, broken teeth, and a sheared shaft. PSU provided data snapshots at fifteen-minute 
intervals. The failure occurred after 162.5 hours, corresponding to 650 snapshots. Figure 15 shows the 
very complex, nonlinear features in the three components of the tri-axial accelerometer data (a). The 
individual snapshots were combined into one long dataset (12.7 GB).  Acceleration was subsequently 
converted to a long stream (4.1 GB) of vibration power (Fig. 16), using the previously described method 
to convert tri-axial acceleration into power via time-integration to velocity (v = ∫a dt) with a subsequent 
vector dot-product to produce power (P ~ a•v). We obtained the traditional nonlinear measures for each 
of ten 50,000-point cutsets from each snapshot of P; these cutset-based measures were then averaged over 
all ten cutsets of each snapshot and displayed for that snapshot (Fig. 17). Correlation dimension (top plot 
of Fig. 17) varies erratically between 2.9 and 3.1 before 65 hours, then rises irregularly to 3.6 as a 
forewarning indication, and finally falls abruptly to <2 as a failure indication. Kolmogorov entropy 
(middle plot of Fig. 17) varies irregularly between 0.025 and 0.045 prior to 65 hours, then rises erratically 
to >0.07 as a forewarning of failure, and finally falls to <0.01 as a failure indication. The first minimum in 
the mutual information function (bottom plot of Fig. 17) is constant at one time step, and then decreases 
abruptly to 0.1 at failure. The forewarnings are weak, because the variations are not inconsistent with the 
previous irregularities. The failure indications are unique and clear. The TNM vary erratically over small 
ranges of values, while the PSDM (below) show robust forewarning via variation over a much larger 
range of values. 

Figure 18 shows the PSDM for PSU Run #36. The phase-space parameters are S=274, d=2, λ=1, which 
are the same values that we used for the PY2 MDTB data to show consistency with that earlier analysis. 
All four measures of dissimilarity rise systematically (Figs. 18a - 18d) to provide forewarning of the 
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failure. However, a more robust and specific end-of-life (EOL) indicator is needed. We observe that all 
four of the PSDMs have similar tends, suggesting the definition of a composite measure, Ci, as the sum of 

e four renormalized PSDMs for the i-th dataset (Fig. 18e): 
 

i = U(χ2) + U(χc
2) + U(L) + U(Lc).         (1) 

use 
ontiguous, non-overlapping windows of Ci to obtain the best straight-line fit in a least-squares sense: 

            yi = ai +b.              (2) 

ition change. Next, the variance, σ2, 
easures the variability of the Ci values about this straight-line fit: 

        σ2 = Σ  (y  – C )2/(m-1).           (3) 

w. Finally, G 
easures the variability of next m values of C  about an extrapolation of this straight-line: 

          G = Σ  (y  – C )2/σ2.           (4) 

2, at 2 
ours. Thus, G provides clear end-of-life forewarning, plus indication of the failure (G = 244,655). 

th

C
 

This composite measure is more robust than any one of the PSDM, while accurately indicating condition 
change. The end-of-life indication from this composite measure is quantified as follows. We 
c
 
 
 
The window length of m=10 values of Ci (and yi below) is chosen consistent with the number of cutsets in 
each snapshot. Other values of m give inferior indication of cond
m
 
 i i i
 
Other fits (quadratic, cubic, and quartic) extrapolate poorly outside the fitting windo
m i

 
 i i i
 
The index, i, in Eqs. (2) – (4) runs over the m values of Ci and yi. Note that G has the form of a 
conventional chi-squared statistic, but we do not use that notation to avoid confusion with the two χ2 
PSDMs, U(χ2) and U(χc

2). A statistical test for G would involve the null hypothesis that deviations from 
the straight-line fit are normally distributed. Standard chi-squared statistical tables give the corresponding 
value of G ≤ 28.5 for m = 10 degrees of freedom with a probability of one out of the number (650) of 
extrapolations (1/650 ~ 1.5 x 10-3). However, we observe that many instances, for which G>28.5 
throughout this test sequence. These outliers occur because the underlying three-dimensional acceleration 
has dynamical correlations, thus violating the requirement for independent, identically distributed 
samples. Instead, we use G (solid curve in Fig. 18f) as a relative measure of end-of-life. We compare each 
value of G to the previous values to obtain a running maximum Gmax (dashed curve in Fig. 18f), 
neglecting the first six G-values to avoid startup transients. This running maximum rises in modest 
increments to 376 over the first 159.75 hours of the test, while intermediate values of G fall well below 
the running maximum. The chain curve (-.-) in Fig. 18f is the ratio, R = (Gmax)k/(Gmax)k-1, of the current 
maximum in G (Gmax)k to the previous maximum in G (Gmax)k-1. G rises to 2,493 at 160 hours, with a 
corresponding R = 6.62, which is substantially more than the largest non-end-of-life value, R = 2.2
h
 
The protocol for MDTB Run #37 involves a break-in period at the nominal (1X) load (per the test plan in 
App. C) for one hour, followed by three times (3X) the normal load until failure; our analysis uses only 
the test data during the overload period. Figure 19 shows the specific end-of-life failure for MDTB Run 
#37, including pinion damage and broken teeth. PSU provided snapshots of accelerometer data at one-
minute intervals until the failure. The three components of acceleration as well as vibration power are not 
unlike Run #36, and are not shown. The individual snapshots were combined into one long dataset (10 
GB), and subsequently converted to a long stream (3.5 GB) of vibration power, as described above. We 
obtained the traditional nonlinear measures for each of ten 50,000-point cutsets from each snapshot; these 
cutset-based measures were then averaged over all ten cutsets and displayed for each snapshot (Fig. 20). 
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Correlation dimension (top plot of Fig. 20) decreases from 3.7 gradually but irregularly to 3.5 at 5.3 
hours. The next irregular decrease to 2.3 at 8 hours is an early forewarning, while the more abrupt drop to 
<0.5 is an indication of failure onset. Kolmogorov entropy (middle plot of Fig. 20) likewise decreases 
erratically from 0.09 to 0.04 at 8 hours. The abrupt drop to near zero after 8 hours is an indication of 
failure onset. The first minimum in the mutual information function (bottom plot of Fig. 20) is constant at 

ne time step over the entire test. Moreover, the TNM vary erratically over small ranges of values, while 

value of R = 
.07 that is much more than the largest non-end-of-life value at 0.5 hours (R = 1.79). Thus, G provides 

bruptly to a 0.1 at 4 hours, as a failure indication. The TNM vary 
rratically over small ranges of values, while the PSDM (below) show robust forewarning via variation 

 s

 ru n

max k max k-1 h a corresponding R 
= 11.71, which is substantially more than the largest non-end-of-life value at 0.6 hours (R = 6.20). Thus, 
G provides end-of-life forewarning, as well as indication of the failure (G = 48,379). 

o
the PSDM (below) show robust forewarning via variation over a much larger range of values. 
 
Figure 21 shows the PSDM for PSU Run #37. The phase-space parameters also are S=274, d=2, λ=1, 
which are the same as those for the PY2 MDTB data to show consistency with the earlier analysis. All 
four measures of dissimilarity rise systematically (Figs. 21a - 21d) to provide forewarning of the failure. 
As before, we use G as a relative measure of end-of-life, as shown in Fig. 21f. We compare each value of 
G to the previous values to obtain a running maximum Gmax (dashed curve in Fig. 21f), neglecting the first 
five values to avoid startup transients. This running maximum rises in modest increments to 333 over the 
first 5 hours of the test, while intermediate values of G fall well below the running maximum. The chain-
dashed curve (-.-) in Fig. 21f shows the ratio, R = (Gmax)k/(Gmax)k-1, of the current maximum in G (Gmax)k to 
the previous maximum in G (Gmax)k-1. G rises to 2,690 at 8.1 hours, with a corresponding 
8
clear end-of-life forewarning, as well as distinct indication of the failure itself (G = 16,284). 
 
The protocol for this MDTB test involves a break-in period at the nominal (1X) load (per the test plan in 
App. C) for one hour, followed by three times (3X) the normal load until failure; our analysis uses only 
the test data during the overload period. Figure 22 shows the specific end-of-life failure for MDTB Run 
#38, including broken/rounded off teeth on both the pinion and the gear. PSU provided snapshots at one-
minute intervals until the failure. The three components of acceleration as well as vibration power are not 
unlike Run #36, and are not shown. The individual snapshots were combined into one long dataset (4.7 
GB), and subsequently converted to a long stream (1.6 GB) of vibration power, as described above. We 
obtained the traditional nonlinear measures for each of ten 50,000-point cutsets from each snapshot; these 
cutset-based measures were then averaged over all ten cutsets and displayed for each snapshot (Fig. 23). 
Correlation dimension (top plot of Fig. 23) is roughly constant at 2.85 until 1.3 hours, and then rises 
slowly and irregularly to 3 at 2.5 hours. Finally, correlation dimension decreases very irregularly to <0.3 
at 4 hours, as a failure indication. Kolmogorov entropy (middle plot of Fig. 23) likewise is roughly 
constant (but very erratic) at 0.02 until 2 hours, and then rises irregularly to a peak of 0.04 at 2.7 hours. 
Kolmogorov entropy then decreases erratically to near zero at 4 hours, as a clear failure indication. The 
first minimum (M1) in the mutual information function (bottom plot of Fig. 23) is constant at one time 
step until 4 hours, and then falls a
e
over a much larger range of values. 
 
Figure 24 shows the PSDM for PSU Run #38. The phase-space parameters again are S=274, d=2, λ=1, 
which are the same as those for the PY2 MDTB data to how consistency with the earlier analysis. All 
four measures of dissimilarity rise systematically (Figs. 24a - 24d) to provide forewarning of the failure. 
As before, we use G as a relative measure of end-of-life, as shown in Fig. 24f. We compare each value of 
G to the previous values to obtain a running maximum Gmax (dashed curve in Fig. 24f), neglecting the first 
five values to avoid startup transients. This n ing maximum rises in modest increments to 374 over the 
first 2.6 hours of the test, while intermediate values of G fall well below the running maximum. The 
chain-dashed curve (-.-) in Fig. 24f shows the ratio, R = (Gmax)k/(Gmax)k-1, of the current maximum in G, 
G )  , to the previous maximum in G, (G ) . G rises to 13,486 at 3.77 hours, wit(
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Run #39 involves a somewhat different test protocol with a one-hour break-in period at the nominal load 
(1X), followed by twice the normal load (2X) for two hours, after which the load alternated between three 
times normal load (3X) and 2X loads for ten and five minutes, respectively. This experiment seeks failure 
forewarning in the presence of load changes. Figure 25 shows the failure state, including broken and 
rounded teeth on both the gear and pinion. Since the conventional statistical measures and traditional 
nonlinear measures previously provided no consistent failure forewarning, we show only the PSDM for 
PSU Run #39 in Figs. 26-27. The sawtooth features in each of the six subplots correspond to the 
transition between 2X and 3X loading with the straight-line portion in Fig. 26 corresponding to the 3X 
segment in Fig. 27, and inversely. The phase-space parameters again are S=274, d=2, λ=1, which are the 
same as those for the PY2 MDTB data to show consistency with the earlier analysis. Figure 26 shows the 
PSDM results only for the 2X-portion of the experiment. All four PSDM rise systematically (Figs. 26a - 
26d) to provide forewarning of the failure, with a corresponding systematic rise in the composite measure, 
Ci. As before, we use G as a relative measure of end-of-life, as shown in Fig. 26f. We compare each value 
of G to the previous values to obtain a running maximum Gmax (dashed curve in Fig. 26f), neglecting the 
first six values to avoid startup transients. This running maximum rises in modest increments to Gmax = 
853 over the first 3.68 hours of the test, with a corresponding non-end-of-life value for R = 
(Gmax)k/(Gmax)k-1 = 3.89, as shown by the chain-dashed curve in Fig. 26f. Subsequently, G rises to 5,231 at 
8.43 hours, with a corresponding R = 3.89. Thus, G provides end-of-life forewarning, but no indication of 
the failure onset (GONSET = 5,231), because the failure for this test is driven by the 3X loading. We analyze 
the 3X portion of MDTB Run #39 separately, as shown in Fig. 27. All four PSDM rise systematically 
(Figs. 27a - 27d) to provide forewarning of the failure, with a corresponding systematic rise in the 
composite measure, Ci. We again use G as a relative measure of end-of-life, as shown in Fig. 27f, 
comparing each value of G to the previous values to obtain a running maximum Gmax (dashed curve in 
Fig. 27f), neglecting the first six values to avoid startup transients. This running maximum rises in modest 
increments to Gmax = 1,151 over the first 7.92 hours of the test, with a corresponding non-end-of-life value 
for R = (Gmax)k/(Gmax)k-1 = 2.88, as shown by the chain-dashed curve in Fig. 27f. Subsequently, G rises to 
33,415 at 8.35 hours, with a corresponding R = 29.03. Thus, G provides end-of-life forewarning, as well 
s indication of the failure onset (G = 44,552) at 8.55 hours.  

EO

r), to forewarning of failure (yellow light for “caution”), and finally to 

ure onset 
rewarnings, due to the change in test protocol. The green-yellow-red approach still applies for MDTB 

Run #39. Ignoring the Run #39 ET/TFAIL ≥ 0.990. 

a

 
The results for PSU Runs #36-39 are summarized in Table 2, which gives: (a) the largest non-EOL value 
of R (RNEOL) and the corresponding value of G (GNEOL); (b) values of R (R L) and G (GEOL) that indicate 
the end of life, and the matching time (TEOL/TFAIL); (c) the value of G at failure onset (GONSET) and the 
corresponding time (TONSET/TFAIL); and (d) the  failure-endpoint time (TFAIL). Runs #36-38 have largest 
non-EOL values: RNEOL = 6.20 and GNEOL = 376. The smallest EOL values are: REOL = 6.62 and GEOL = 
2,493. Thus, limits (for example) of R > 6.4 and G > 1,800 provide EOL forewarning. Moreover, we find 
that the largest EOL value of GEOL = 13,486, while the smallest failure-onset value is GONSET = 16,284. 
Thus, an intermediate value (for example) of G > 15,000 distinguishes the EOL from failure onset 
forewarning. This approach gives quantitative limits for transitions from nominal operation (green-light 
or “go” in a traffic signal metaphof

failure onset (red-light for “stop”). 
 
We consider the results of MDTB Run #39 separately, because this experiment involves a different test 
protocol.  Table 2 shows that the above limits for G and R also distinguish between the non-EOL (green) 
and EOL (yellow) states for the 3X-portion of this test, because the higher overload drives the failure. 
These limits do not apply to the 2X test, due to the reduced damage at the lower overload. Unsurprisingly, 
a different limit of G > 38,000 (for example) distinguishes between the EOL and fail
fo

-2X results, we find TEOL/TFAIL ≥ 0.938 and TONS
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Table 2: Summary of MDTB Test Results 

 r-
 n. 

 Run Ove
load

∆τ 
mi

RNEOL GNEOL REOL GEOL TEOL 
TFAIL 

GONSET TONSET 
TFAIL 

TFAIL 
hr. 

36 2X 15 2.22    376   6.62   2,493 0.985 244,655 0.998 162.50 
37 3X 1 1.79    333   8.07   2,690 0.956   16,284 0.996     8.55 
38 3X 1 6.20    374 11.71 13,486 0.938   48,379 0.990     4.02 
39 2X 1 2.32    853   3.89   5,231 0.980     5,231 0.980     8.60 
39 3X 1 2.88 1,151 29.03 33,415 0.972   44,552 0.994     8.60 

 
 
IE. Shaft-Crack Seeded-Fault Data from the Pennsylvania State University 
 
ORNL received tri-axial accelerometer data from PSU for Run #17 of the Shaft-Crack test; see App. D 
for the test plan. The data sampling rate of the tri-axial acceleration is 128 kHz for each 10-second 
snapshot. Our analysis of the corresponding vibration power revealed inadequate quality for two reasons. 
First, the signal range for baseline data is between -18.9 and 15.5. This range drops abruptly for the first 
shaft notch (-10.9 to 8.6), then increases abruptly for the second shaft notch (-24.9 to 24.2), and rises still 
further for the third shaft notch (-32.5 to 28.0). The fourth through ninth shaft notches have roughly a 
consistent range between ±20. This unusual range variability in the first four datasets implies a problem 
with initial signal calibration or scaling. A second data quality problem is that the first minimum (M1) in 
the mutual information function is one time step, corresponding to under-sampling of the data. The value 
of M1 should be four or more time steps for adequately sampled data. These quality problems prohibit 
further useful analysis of the acceleration data. PSU also supplied time-serial angle data from a toothed 
wheel; see App. D for details. ORNL analysis of this data revealed two additional quality problems. First, 
the width of the solid teeth and intervening gaps was not the same over the circumference. Second, the 
rotation speed was 23 Hz, corresponding to roughly 0.06 milliseconds (16.6 kHz) between samples of the 
angular motion for each of the 360 teeth. However, the angular motion varied much faster than 16 kHz, 

sulting in under-sampling of the angular dynamics. These quality problems prohibit further useful 

er is constant at two time steps, which is 
ubstantially less than four time steps, indicating that this data also is under sampled at 196 kHz. This 

re
analysis of the time-serial angle data. 
 
ORNL received additional tri-axial accelerometer data from PSU for Run #18 of the seeded-fault Shaft-
Crack test, also according to the test plan of App. D. The data were provided at two sampling rates: 128 
kHz and 196 kHz. We analyzed the 196 kHz data with 1,000,000 data points (5.1 seconds) for each of ten 
snapshots, due to the data under-sampling problem with Run #17, as discussed above. The first minimum 
M1) in the mutual information function of the vibration pow(

s
quality problem prohibits further useful analysis of the data.  
 
ORNL received data for Run #19 of the Shaft-Craft test at 196 kHz sampling rate, with improvements in 
the experimental hardware to eliminate grounding loops that introduced high-frequency noise. Quality 
analysis of this data revealed that the sampling rate was adequate, as was the data precision (12-14 bits). 
However, the range of signal variation was markedly different between the baseline and the subsequent 
test cases. Moreover, the distribution function for the number of signal occurrences versus signal value is 
also very different between the baseline (abrupt rise to a peak at small signal values, followed by a 
gradual decrease at high values) and subsequent test cases (rise to central sinusoidal peak than roughly 
symmetry decrease). This difference arises because the waveforms are very different between the baseline 
(sharp positive spikes) and test cases (complex, nonlinear oscillations). Documentation for this test 
showed that the old tri-axial acceleration sensor was used for the baseline data, while the new acquisition 
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hardware (three separate acceleration sensors) was used for the subsequent test cases. This change in 
sensors produced the confounding differences between the baseline and subsequent test cases. PSU later 
provided a new set of baseline data that is consistent with the other datasets, allowing further analysis. As 
before, data from the individual tests were concatenated into one long dataset (234 MB) for ease of 
analysis. Figure 28 shows a resultant segment of vibration power (Fig. 28a), along with conventional 
statistical measures (Figs 28b-28e), and traditional nonlinear measures (Fig. 28e – 28g). The magnitudes 
of minimum and maximum in vibration power (Fig. 28b) and constant, then rise abruptly for the last test. 
The number of time steps per cycle (Fig. 28d) rises slowly and monotonically, showing a large increase 
for the largest cut depth. None of the other measures in Fig. 28 show a consistent change over this test 

quence. Figure 29 shows that all four PSDM rise monotonically by one-hundred-fold as the cut depth 
re in sharp contrast to the 

eak ones of Fig. 28. 

d, 
isplaying complex, nonlinear features. Conventional statistics and traditional nonlinear measures (Fig. 

load levels are not unlike Fig. 30, 
nd are not shown. The late arrival of this data did not allow enough time to complete further analysis. 

 of the data acquisition needs to 
e appropriate supervisor (Karl Zimmerman) on 11 February 2003. The computer and software have 

se
increases from zero (baseline) to 3/8”. These strong indications of change a
w
 
IF. Generator Seeded-Fault Data from the Pennsylvania State University 
 
We analyzed additional PSU data with operator-imposed turn-to-turn shorts in the rotor of a motor-
driven, three-phase electrical generator. The generator is a Kato Engineering, Model A267890000, (5 kW, 
3-phase, 60 Hz, synchronous alternating current). The drive motor is a Kato Engineering, Model 
D267880000 (7.5 HP, synchronous, brushless, direct current). The sequence test states were: (a) nominal 
operation, (b) short across five rotor turns, (b) short across ten rotor turns, (c) short across twenty-five 
rotor turns, (d) short across fifty rotor turns, and (e) short across one hundred rotor turns, out of five 
hundred turns in one of four poles. The tri-axial accelerometer data were sampled at 102.4 kHz, 
concatenated into one long dataset for analysis, and converted to vibration power, as described above. 
The data are acquired under different resistive loads, corresponding to four different output powers: zero, 
1.2kW, 2.4kW, and 3.6 kW. Figure 30a shows 5.9 milliseconds of vibration power data at the zero loa
d
30b-30g) do not indicate the rising seeded-fault severity. Plots for other 
a
 
IG. Collaboration with ORNL’s High Flux Isotope Reactor (HFIR) 
 
Lee Hively met with HFIR staff (Steve Burnette, Dave Davenport, Eric Griffis, and Mark Matthews) on 
17 January 2003 to initiate collaboration. These discussions identified nuclear-grade equipment for 
condition monitoring. Specifically, the hot-off-gas fan #6 (HOG6) has a long and continuing failure 
history; this fan is belt-driven by a 10HP three-phase electric motor. Present predictive maintenance 
approaches at HFIR include vibration analysis (displacement, velocity, and acceleration), thermography, 
lubrication oil analysis, and motor current signature analysis. Acquisition of accelerometer data is covered 
by the present HFIR configuration control, and presently is by a hand-held instrument (Computational 
Sciences Inc. of Knoxville, Tennessee) that samples 1024 points over 100 milliseconds. This data is 
insufficient in both the sampling frequency and the total number of data points. Consequently, improved 
data acquisition is required, for which Hively committed $10K under this NERI project for the HFIR 
effort. Changes to the HFIR configuration control are necessary to acquire motor current and voltage data, 
which therefore may not be available for this project. Hively met with HFIR instrumentation and controls 
staff (Ken Hardin, Randy Welch, and Karl Zimmerman) on 10 February 2003 to outline the data 
acquisition needs for tri-axial accelerometer data from HOG6. Hively provided a personal computer, 
monitor, data acquisition board, isolation block, and associated LabViewTM software to HFIR staff (Ron 
Miller and Sam Henley) on 11 February 2003. The data acquisition hardware and software were acquired 
under this project during PY2. Hively also provided a written description
th
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been set up and are functional. However, two HFIR outages delayed the procurement of the sensors, final 
setup, and acquisition of operational data beyond the end of this project. 
 
IH. Task 3.1 – Cost-Benefit Analysis for Failure Prognostication 
 
A general and unambiguous cost-benefit evaluation of machinery health assessment technologies has 
remained an elusive goal of engineering planning. Indeed, an exhaustive cost-benefit evaluation would 
involve a complex risk assessment with fuzzy parameters, probabilities, confidence levels, and 
information gaps. Such an evaluation was attempted under the NERI program to track the cost of various 

achinery condition and maintenance scenarios for optimal scheduling1. Development of a systematic 

wo of the most important factors for NPP equipment failures are the risk of forced outage time and the 

The following examples are representative of the actual failure-forewarning equipment tests that were 

e. Cost 

As a result of the greater wholesale electricity cost for the next few days after the forewarning, the cost 
rises with the increasing delay in maintenance time. If the forewarning occurs when the cost of electricity 
was projected to decline, a delay in the maintenance would be cost-effective, subject to the expected 
timing of the failure. Thus, ongoing condition assessment of the turbine-generator system with a one-
week forewarning window would result in substantial savings when projected make-up power costs are 
integrated with machinery health information in the maintenance decision process. 

m
cost-benefit approach is beyond the scope of this project. Instead, we consider several scenarios that 
reflect actual plant problems to illustrate the benefits of timely failure forewarning via nonlinear analysis. 
This anecdotal approach provides insight into the cost benefits, while avoiding the issue of precise costs, 
which usually are questionable at best. 
 
T
cost of make-up power. Table 3 shows the ranking of the industry experience with system failures in 
terms of forced outage time.2  The cost of make-up power is quite variable, as seen in the estimated costs 
of Fig. 31.3  Thus, correct timing of maintenance is extremely important in determining and eventually 
minimizing the cost of outage make-up power. 
 

performed under this NERI project. We selected four pieces of equipment for cost-benefit analysis, as 
summarized in Table 4, based on the failure rates in Table 3 and the availability of cost information. We 
take the cost of replacement electrical power at $0.7 million dollars per 24-hour day1. This value assumes 
a 1300 MW plant at $22/Mwh, and should be adjusted for plant size. 

 
The first example involves a turbine generator, which is responsible for a 16% of forced outages, as 
shown in Table 3. Our analysis assumes: (a) timely shutdown, (b) the outage time is the same for a 
forced-failure outage as for a planned outage, and (c) the maintenance/repair costs are the same in both 
cases. We consider only the replacement power cost, following the analysis of an earlier NERI project, 
“Smart Equipment in NPP.” For details, see the work by Campbell, et al, “Virtual Machine Equipment 
Simulation (Task 3.1)2”. This example postulates a forewarning on June 10, 2002 that a turbine failure 
would occur within 1 to 2 weeks.  We analyze two cases.  The first case allows the turbine to fail with a 
trip. The second case schedules turbine maintenance within a day of the forewarning. We further assume 

at the time-to-repair distribution for this second case is the same as the run-to-failure casth
calculations assume a 1300 MW plant. The average wholesale price for electricity, provided by 
Reliadigm, a subsidiary of Public Service Company of New Mexico for 2002 (Fig. 31), ranges from less 
than $20/Mwh to about $130/Mwh.  Consequently, the timing of a plant outage may have a dramatic 
effect on the cost of lost generation. Figure 32 shows that the mean run-to-failure cost is $6.7M, versus 
$2.9M when maintenance is scheduled immediately, based on the failure forewarning indication. 
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Table 3: Lost Availability Ranking of U.S. PWR Plant Systems/Components (1990-1995)1 

Rank System/Component
Outage 
Time 

(Hours)

Percent of 
Outage

Number of 
Failures

MTTR 
(Hours)

1 Transformer 14,442.20 10.64 39 370.3
2 Main Generator 10,955.30 8.07 70 156.5
3 Turbine 10,654.10 7.85 115 92.6
4 Steam Generator 10,597.60 7.81 46 230.4
5 Reactor Coolant Pump 10,004.10 7.37 47 212.9
6 Service Water System 6,369.50 4.69 6 1061.6
7 Steam Extraction Piping 6,362.80 4.69 4 1590.7
8 Diesel Generator 5,828.10 4.29 12 485.7
9 Control Rod System 4,194.60 3.09 51 82.2
10 Main Feedwater Valve 4,147.40 3.06 60 69.1
11 Pressurizer 4,073.40 3 20 203.7
12 Safety Injection System 3,899.40 2.87 8 487.4
13 Reactor Coolant System 3,327.40 2.45 22 151.2
14 Main Steam Valve 3,319.70 2.45 33 100.6
15 Circuit Breaker 3,067.10 2.26 14 219.1
16 Steam Generator Feedpump 2,854.50 2.1 18 158.6
17 Auxiliary Feedwater Pump 2,776.40 2.05 4 694.1
18 Moisture Separator Reheater 2,413.60 1.78 19 127
19 Inverter 2,399.80 1.77 12 200
20 Condenser 2,185.10 1.61 19 115
21 Main Feedwater Pump 1,983.50 1.46 37 53.6
22 Main Steam System 1,225.80 0.9 15 81.7
23 Relay 1,183.70 0.87 12 98.6
24 Intake Valve 1,142.20 0.84 2 571.1
25 Circulating Water 955.4 0.7 8 119.4  

 
 

Table 4: Sample Equipment Used in the Cost Benefit Analysis 
Component(s) Item 

Number in 
Table 3 

Reasons for Selection 

Turbine/Generator  2 & 3 Total of 16% of forced outage time is associated 
with these components.  Failure results in full 
unit outage. 

Centrifugal Charging Pump NA Although not specifically listed in Table 3, 
failure is considered to be a thorn in the side of 
utility maintenance personnel, and results in 
LCOs that are “black marks” against the utility. 

Reactor Coolant Pump 5 Failure results in 8% of forced outage time.  In 
addition, the issue of RCP shaft cracking has 
become very important. 

Steam Generator Feed Pump 16 & 21 Total of 2.5% of outage time.  These pumps are 
the heart of the secondary system. 
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The second example involves a centrifugal charging pump. Usually, plants have redundant pump 
components. Most Westinghouse pressurized water reactors (PWRs) have three pumps: one normal 
charging pump and two emergency charging pumps; see Figs. 33-34 for typical pump layouts. (Note that 
many plants originally had one of these pumps as a positive displacement pump, which now has been 
replaced in almost all plants by an additional centrifugal charging pump.)  The abnormal operation or loss 
of one pump is considered to be a safety condition, and the subject pump must be reported to the NRC as 
“inoperable.”  The NRC may opt to issue a Limited Condition of Operation (LCO), requiring that 
restorative maintenance must be performed within 72 (normal) to 90 hours (extended). If the equipment 
restoration cannot be completed within this time window, the unit must be shut down.  Typical 
component failures in these pumps involve the motor, bearings, gears, and shaft cracking.  Many experts 
believe that much of this damage may be accumulated during the mandated quarterly in-service testing 
(IST), since the flow conditions during those tests are more extreme than the normal design conditions. 
Consequently, most utilities maintain a spare pump on site, due to high pump-failure rates. However, 
pump replacement may require more time than the LCO allows, resulting in a unit shutdown. 
 
Forewarning may allow maintenance during LCO, thus avoiding a unit outage or derating in some cases. 
We assume in this example that forewarning of a bearing failure allows a simple repair during the LCO. 
The total repair cost would about $14,000: $4500 for parts, $9720 for labor (3 person crew, 90 work-
hours per person), and no derating or unit trip. The second case involves running the bearing to failure, 
which would require a pump replacement. We estimate 114 hours for the repair and declaration of 
inoperative status in this second case with the unit off-line for 24 hours (unit shutdown after the 90-hour 
LCO), plus an equivalent of 12 hours for unit startup. The pump replacement would cost $200,000, plus 
36 hours of lost electrical generation cost, for a total cost of $1.25M. The saving would be over $1.2M. 
 
Under the current regulatory environment, knowledge of the specific condition of the centrifugal charging 
pump may be less than beneficial. Specifically, failure forewarning with a long remaining life still would 
require that the pump must immediately be declared inoperative, and an LCO requested. A corresponding 
change in the regulatory environment is needed to accept that condition assessment of safety-related 
equipment is good, allowing the utility to ensure that the equipment is in the best possible operating state.  
Moreover, proper interpretation of such information may allow the reduction of redundancy, rather than 
the present heavy reliance on redundancy, because equipment health is unknown. Additionally, 
continuous machinery health monitoring may allow elimination of pump IST, thus reducing the damaging 
affects of non-nominal flow.  IST could be performed only when the remaining useful life of the pump is 
deemed to be short enough to indicate the need for rotation to the stand-by pump. 
 
The third example involves a steam generator feed pump/turbine. A unit trip is the typical result of the 
unexpected loss of a Steam Generator Feed Pump (SGFP) in a PWR, or a Reactor Feed Pump (RFP) in a 
BWR, with subsequent operation at reduced power. This pump is on the secondary side, but is the very 
heart of power production.  When one pump is out of service, the unit cannot operate above ~70% power. 
For instance, the loss of a SGFP due to turbine shaft cracking occurred at Plant Vogtle (Southern Nuclear) 
in the mid-90s. The result was a unit trip, and the usual 3-4 days to get back on line. Subsequently, the 
unit operated at ~70% power for approximately one week during turbine repair. The resulting makeup 
power cost was ~$3.5M.  
 
When bearing overload is detected, the unit is derated to 70% and pump realignment is performed.  If the 
fault is not detected, damage may progresses to bearing failure, rotating element failure, or catastrophic 
failure of the entire pump. Consequently, we analyze four scenarios (from top to bottom in Table 5) as 
follows: (a) correction of bearing overload after failure forewarning via nonlinear analysis; (b) repair of 
failed bearing; (c) repair of failed rotating assembly; and (d) replacement of failed pump.  Table 5 shows 
that the resulting cost savings are between $2.2M and $4.2M. 
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Table 5: Steam Generator Feed Pump Cost Savings 

Workers
Crew 
Hours

Work 
Hours

Labor 
Cost per 

Hour
Labor 
Cost Parts Cost

Unit 
Outage

Unit 
Derate 
Hours

Unit 
Derated to 

percent

Cost of 
Replacement 

Power Total Cost Savings
3 24 72 36 2,592$  -$          0 36 0.7 315,000$     317,592$    
3 30 90 36 3,240$  4,500$      72 48 0.7 2,520,000$  2,527,740$ 2,210,148$  
4 36 144 36 5,184$  50,000$    72 144 0.7 3,360,000$  3,415,184$ 3,097,592$  
4 62 248 37 9,176$  200,000$ 72 250 0.7 4,287,500$ 4,496,676$ 4,179,084$ 

 
The fourth example involves a reactor coolant pump (RCP), which is a vital part of the power production 
cycle. Although not a safety-related component, its continued operation is essential to unit function.  We 
consider the failure of an actual pump at the Tennessee Valley Sequoyah plant in early September of 2000 
(six months after a refueling outage). A RCP on Unit 1 was brought down for balancing after exceeding 
the administrative limit for vibration of 10 mils peak-to-peak. The vibration increased on each successive 
balance test, subsequently exceeding the 15-mil alarm limit at 17 mils (peak to peak), and approaching the 
20-mil required-shutdown limit. Inspection revealed a crack encompassing 252 degrees circumferentially 
(Figs. 35-36).4 The lack of a spare pump shaft resulted in a 40-day outage. 
 
This scenario assumes forewarning of the crack fault allows a spare pump shaft to be ordered and 
completion of the maintenance during the scheduled outage 6 months earlier. If the cost per day for make-
up power is $0.7 million1, and the maintenance cost is the same whether it had been done during the 
scheduled or unscheduled outage, the resulting savings would be $28M. 
 
We summarize the results of this cost-benefit analysis as follows. Timely forewarning and accurate 
diagnosis of just one NPP failure is sufficient to justify extensive monitoring of vital and safety related 
systems.  Table 6 shows a summary of the scenarios used in evaluating the cost benefit.  In each case, 
actual failures have occurred on the in-plant equipment. Typical cost savings range from $1M to $28M, 
depending on the specific equipment and failure scenario. While the precise cost savings vary with the 
underlying assumptions, the conclusion is that failure forewarning will allow millions of dollars in cost 
savings for each NPP unit, as well as important improvements to safety. 
 
-I. Task 3.2 – Commercialization Roadmap and Future Work I

 
The final component of this task is a roadmap to a commercial product from the current state-of-the-art. 
The present technology has the attributes, as shown on the left-hand side of Table 7. The highly desirable 
features of a commercial product are on the right-hand side of Table 7. Much work remains to bridge the 
wide gulf between today’s retrospective analysis of archival data on a desktop computer to a future stand-
lone commercial device for prospective analysis of real-time data on a portable computing platform. a

 
Current technology will enable some improvements almost immediately, as shown by the center column 
in Table 7. Implementation of this approach on a portable computer platform (e.g., laptop) is possible 
now, because the typical size of the forewarning analysis is <28 megabytes. Moreover, PSDM analysis is 
faster on a 2 GHz Pentium-4TM desktop computer than the wall-clock time to acquire the corresponding 
archival data. Modern laptop and digital-signal processor speeds are ≥3 GHz and have ≥64 MB of 
memory, so speed and memory are not a limitation for portability. The research-class FORTRAN 
software has been developed and used on a variety of different computers and operating systems over the 
past nine years: IBM RISC/6000 under IBM’s version of UNIX, DEC-alpha under DEC’s version of 
UNIX, Intel-PII under Windows NT and Windows 2000, and AMD-AthlonTM and Intel Pentium-4TM
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System/Component Demonstration Scenario Source of Savings
Approx. Cost 

Savings
(Per Event)

Environmental 
Cleanup

Turbine-Generator Unit outage required for 
repair/maintenance.  Outage time and 
maintenance cost assumed to be 
essentially uneffectied by choice of 
maintenance interval.  

Cost difference based on difference in 
projected make-up power costs only.

$3.8 Million

PWR: Minimal 
(non-radioactive)
BWR: Potentially 
major

X X X X

Centrifugal Charging 
Pump

Maintenance resulting from failure will 
result in exceeding normal 72-90 hour LCO, 
therefore requiring unit shutdown.  

Preventative maintenance based on 
machinery health monitoring may be 
accomplished during LCO window, thus 
eliminating unit outage.

$1.2 Million Potentially major X* X* X X X

Steam Generator Feed 
Pump

Thermal misalignment results in bearing 
failure, unit trip, then operation at 
approximately 70% power during repair.  
Bearing health monitoring allows repair 
during low-cost makeup power cost time, 
and avoids the unit trip.

Preventative maintenance based on 
machinery health monitoring averts unit 
trip, shortens repair $2.2 Million

PWR: Minimal 
(non-radioactive)
BWR: Potentially 
major

X X X X

Steam Generator Feed 
Pump

Thermal misalignment results in rotating 
assembly failure (shaft or blade), unit trip, 
then operation at approximately 70% power 
during repair.  Bearing health monitoring 
allows repair during scheduled outage, and 
avoids the unit trip.

Preventative maintenance based on 
machinery health monitoring is performed 
during scheduled outage, averts unit trip, 
shortens repair $3.1 Million

PWR: Minimal 
(non-radioactive)
BWR: Potentially 
major

X X X X

Steam Generator Feed 
Pump

Thermal misalignment results in complete 
pump failure, unit trip, then operation at 
approximately 70% power during repair.  
Bearing health monitoring allows repair 
during scheduled outage, and avoids the 
unit trip.

Preventative maintenance based on 
machinery health monitoring is performed 
during scheduled outage, averts unit trip, 
shortens repair $4.5 Million

PWR: Minimal 
(non-radioactive)
BWR: Potentially 
major

X X X X

Reactor Coolant Pump Failure results in unit trip, followed by 
extended unscheduled 40 day outage.

With timely indication of crack in shaft, 
maintenance for pump shaft replacement, 
could be accomplished during refeuling 
outage, thus avoiding forced outage. 

$28 Million Potentially major X** X X
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under Windows2000TM and Windows-XPTM. The software required little (and usually no) change to move 
from one computer and/or operating system to the next. Thus, we anticipate no problems with 
implementation on a portable computer. Further improvements in speed and the memory requirement are 
possible by reducing unnecessary arrays and subroutines. In addition, real-time data acquisition is now 
available commercially: sensors, data acquisition software, data transfer, storage, and analysis. With the 
previous two improvements, prospective analysis is likewise possible in the near-term via software 
improvements and upgrades to analyze (near-) real-time data, including a user-friendly graphical user 
interface for interaction with the machine operator (App. I). Other aspects of the technology will require 
much more development, as discussed next. 
 

Table 7: Summary of improvements for Commercialization 
  

Current state-of-the art for PSDM forewarning Bridge  Ideal for commercial forewarning device 
(a) analyst-intensive ≤3 years (a’) analyst-independent 
(b) retrospective analysis of now (b’) prospective analysis of 
(c) archival data via now (c’) (near) real-time data via 
(d) desktop computer to give now (d’) portable computer to give 
(e) binary forewarning that is ≤3 years (e’) the remaining time to failure that is 
(f) machine- and fault-specific, after which the >3 years (f’) independent of specific machine or fault 
(g) failure occurs in an uncontrolled fashion >3 years (g’) allowing failure avoidance or control 
(h) at high cost of laboratory resources ≥5 years (h’) at reasonable cost 
(i)  depending on laboratory infrastructure >5 years (i’) reliably/independently for years 
 
 
A first-generation commercial device will need one additional and vital feature: analyst-independence. 
The specific tasks develop this computational infrastructure involve: (1) choosing suitable process-
indicative data, (2) checking the data quality and providing feedback to correct any quality problems, (3) 
identifying and removing artifacts in the data, and (4) determining the best forewarning parameters for 
PSDM analysis. We anticipate the algorithmic advancements will include: implementation of a robust, 
multi-channel phase-space analysis; improved filtering to remove signal artifacts with wide variations in 
time scale; and improved measures of forewarning that robustly indicate the increasing severity 
deterioration. A three-year effort will be needed to accomplish these tasks. 
 
Longer-term effort is necessary for other desirable features of a commercial prognostication device. For 
example, determination of the remaining-time-to-failure requires substantial advancement of the data-
driven, model-independent, nonlinear statistical paradigm for prognostication over a range of operational 
loads and usage scenarios, including appropriate confidence intervals and/or error bounds. Development 
of forewarning that is independent of the specific machine or fault will require extensive tests to 
demonstrate the prognostics on many types of surrogate equipment and representative faults, because 
critical operating equipment is unavailable for testing. Moreover, generic forewarning requires an answer 
to the question, “What qualitative and quantitative changes in condition does phase-space dissimilarity 
measure?” The answer to this question probably will require an extensive library of test data across many 
different faults and machines, from which generic features are identified for specific faults and used for 
prognostication across a variety of machinery. Such data should also show forewarning consistency 
across multiple failures for the same fault and machine. Other desirable features are: global-positioning 
for mobile equipment; spread-spectrum wireless data transmission to minimize noise; and integrated 
computer-chip implementation with sensors and battery power. Finally, a commercial device must 
function reliably and independently in adverse environments for a long time at a reasonable cost. 
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II. Other Work 
 
Hively and Protopopescu prepared the third annual (and final) NERI2000-109 project presentation, 
including the results as of the middle of May 2003. At the request of the DOE/NE-20 program manager, 
Lisa Herrera, the principal investigator (Hively) traveled to Rockville, Maryland and gave the 
presentation. Based on the presentation and quarterly reports to date, our DOE Project Manager (Dr. 
Madeline Feltus) summarized the results of this NERI2000-109 work as “outrageously successful.” 
During the three-day review meeting, Hively also served as a peer reviewer for other NERI project 
presentations under the category of advanced instrumentation and controls.  
 
Hively diagnosed premature termination of long FORTRAN computational analyses as arising from 
numerous reads from very long data files. Hively constructed a test code that demonstrated the failure 
after 4.3 x 109 data points. The FORTRAN vendor (Compaq Visual FORTRAN) provided an alternative 
compilation approach (release configuration) that eliminated the problem and also increased the 
computational speed by two- to four-fold (depending on the application) by avoiding numerous internal 
diagnostic checks. The problem arose from overflow of a 32-bit unsigned-integer diagnostic counter in 
the default compilation mode (debug configuration) after 232 (= 4.3 x 109) advances. 
 
Hively and Protopopescu are collaborating on development of analytic models that show chaos in 
individual variables (channels), but that also display very regular behavior when two (or more) of the 
channels are combined. This work demonstrates under well controlled and characterized conditions that 
very complex, chaotic processes can produce simple behavior, which is very counter-intuitive but 
necessary for complex systems (such as robots or the human brain) to operate smoothly (e.g., continuous 
arm motion). This work also has been funded by the companion DOE/BES project under ORNL’s Center 
for Engineering Science and Research (CESAR). 
 
Vladimir Protopopescu gave a presentation, “Predictability and Control Issues in Complex Dynamical 
Systems,” to the DOE/NSF/SIAM Workshop on Predictability of Complex Phenomena in Santa Fe on 17 
December 2002. The co-authors on the paper were J. Barhen, Y. Braiman, and L.M. Hively. This work 

as funded by a companion CESAR project. w
 
The DOE/NE-20 program office requested a full fiscal year’s summary of the FY02 work in a prescribed 
three-page format. ORNL revised our earlier submission (described in the Q1/PY3 quarterly report) and 
sent it via e-mail to Marty Martinez on October 22, 2002. Martinez confirmed receipt of our submission 
in a return e-mail on October 23, 2002. A second revision was received from Martinez in PDF format. 
ORNL responded to Martinez with revisions on 17 December 2003. The final PY2 summary for this 

ERI2000-109 project was included in the DOE/NE-20 NERI 2002 Annual Report. N
 
Hively and Protopopescu prepared and submitted an extended abstract, “Forewarning of Machine Failure 
via Nonlinear Analysis,” to the San Diego meeting of the American Nuclear Society (1-5 June 2003). 

his paper was presented by Protopopescu and summarizes work under this NERI project. 

RNL. Electronic mail 
 via WebMail , which accesses the ORNL server via standard Internet provider. 

 

T
 
Hively worked with ORNL computer support staff to obtain login to his office computers from home. 
This option allows efficient use of computational resources on evenings and weekends. Moreover, this 
option provides access during bad weather or other difficulties, which otherwise would be unproductive 
time. The setup involves Windows2000TM Server on one ORNL PC and WindowsXPTM on another, both 
providing access via Windows Remote Desktop ClientTM that is installed on Hively’s home PC. The login 
from home then appears exactly as if the user is sitting at the computer console at O

TMis
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Hively presented a paper, “Detection of Changing Dynamics in Physiological Time Series,” to the 
American Nuclear Society (ANS) meeting at Gatlinburg, Tennessee (08 April 2003). This paper (and a 
companion proceeding paper with Protopopescu) describes forewarning of biomedical events: epileptic 
seizures from EEG data, cardiac fibrillations from ECG data, breathing difficulty from lung sounds, and 
sepsis onset in experimental rats from ECG data. This work has been funded by the ORNL Laboratory-
Directed Research and Development (LDRD) program, a funds-in Cooperative Research and 
Development Agreement (CRADA), DOE/BES, DOE/OEM, and DOE/OS under the Laboratory 
Technology Research Program. The paper also was published in the meeting proceedings. Hively gave 
another invited presentation, “Forewarning of Biomedical Events,” to medical staff at Cincinnati 
Children’s Hospital Medical Center (Cincinnati, Ohio) on 20 December 2003. Subsequent discussions 
with the physicians identified potential areas for collaboration on new proposals, focusing in forewarning 
of epileptic seizures in children via nonlinear analysis of scalp EEG. 
 
The ORNL nonlinear technology has substantial intellectual property protection in the form of six U.S. 
Patents and two patents pending; see App. F. Two of these six patents were obtained during this NERI 
project. Both of the patents pending (items 1 and 4 of App. F) were submitted to the U.S. patent Office to 
protect ideas that arose from work under this NERI project. No licensing agreements presently exist for 
use of these patents. Appendix G lists the technical publications and oral presentations of this NERI work. 
Appendix H lists recent technical publications and conference papers for related projects in forewarning 
of biomedical event and structural failures. 
 
A graphical user interface (GUI) will facilitate practical use of this forewarning technology. Hively 
mentored an undergraduate student (Talisha Haywood) during the summer of 2003 to implement such a 
GUI. The user-friendly features include visualization of results and intuitively-obvious use with no user 
training. The implementation can work on many different computer platforms that run various operating 
systems. Remote use of the GUI is possible via the Internet using an appropriate server. The summer 
work included development of the functional requirements, software design, implementation using 
MatLabTM, and testing for typical data. The work was funded by DOE’s RAM (Research Alliance for 
Minorities) program. Hively verified that the same MATLAB procedure files yield the same results for 
he same data files on his own WindowsXPTM PC. See App. I for further details. t

 
IA. Performance I

 
The objective of this project is development of failure prognostication and extensive testing to provide 
compelling evidence that the forewarning technology is accurate and robust. This report provides a 
detailed description of the prognostication methodology, which is protected by six U.S. Patents and two 
patents pending (App. F). This report also presents results of extensive tests, showing that the same 
methodology provides robust and timely failure forewarning for a variety of equipment. One previous 
NERI5 project showed failure forewarning for a single pump-lube system. Another previous NERI 
project6 provided different scaling relationships for each machine failure. In contrast to these very limited 
demonstrations, this project provides a single, 
everal machines and different kinds of failure. 

general, robust approach for failure prognostication for 

benefit analysis, and roadmap for commercialization of the technology. The work developed a novel 

s
 
The project was completed on time and within budget. Total project spending (Fig. 37) through the fourth 
quarter of the third project year is $1,117,000 ($157K in PY1, $481K in PY2, and $479K in PY3). This 
project accomplished all of the original objectives, as follows: development of the prognostication 
capability, acquisition of the test data for a variety of equipment (by subcontractors at the Applied 
Research Laboratory of the Pennsylvania State University and at Duke Engineering and Services), 
demonstration of failure forewarning on those seeded-fault and accelerated-failure test sequences, cost-
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approach to machine failure forewarning; two patent applications were submitted during the project to the 
U.S. Patent Office to protect this intellectual property. The project is complete, as summarized in Table 8 
and as documented in detail by this final report. 
 
 
Table 8: Status Summary of NERI Tasks for First, Second, and Third Project Years 

  Milestone/task description 
Planned  

Completion 
Date  

Actual 
Completion 

Date  
Task 1.1: ORNL set subcontract in place for DE&S 
                Subcontractor provide preliminary test data to ORNL 
                Subcontractor construct test plan for accelerated testing 
                Subcontractor provide datasets to ORNL 

     09/00 
     09/00 
     11/00 
     01/01 

10/00 
02/01 
04/01 
06/01 

Task 1.2: ORNL analyze quality of DE&S test data 
                Subcontractor replace any inadequate data 

02/01 
02/01 

06/01 
06/01 

Task 1.3: ORNL perform condition change analysis on data 08/01 08/01 
Task 1.4: ORNL construct library of condition change signatures 08/01 08/01 
Task 1.5: ORNL correlate condition change to failure 08/01 08/01 
Task 1.6: ORNL procure new computer 
                ORNL implement nonlinear analysis on new PC 

08/01 
08/01 

05/01 
06/01 

Task 2.1: Subcontractor provide test-sequence data 03/02, 06/03 06/02 
Task 2.2: ORNL evaluate prognostication of nonlinear paradigm 08/02, 09/03 09/02 
Task 2.3: ORNL improve nonlinear paradigm as appropriate 08/02, 09/03 09/02 
Task 2.4: ORNL develop algorithm for change recognition 08/02, 09/03 09/02 
Task 3.1: Collaborators assess benefits of prognostication 09/03 09/03 
Task 3.2: Collaborators map potential commercialization 09/03 09/03 
 
 
IB. Issues/Concerns I

 
The PY2 subcontract with DE&S finally was set in place on 14 January 2002. That same week, DE&S 
informed the ORNL principal investigator (Lee Hively) of several project management concerns. First, 
DE&S had previous commitments that required their staff to work on weekends and evenings under this 
subcontract. Second, DE&S committed their data acquisition equipment to a different project for the first 
three weeks of February in California. Third, the combination of the previous two items required work by 
DE&S during the last week of February to meet the Task 1 delivery date. Fourth, DE&S informed the 
ORNL principal investigator on Monday February 25, 2002 that they had exceeded the Task 1 budget 
($15K) by $2K. The DE&S request for additional funds to cover the $2K overage was declined. Both of 
the deliverables were complete by the Task 1 deadline of 1 March 2002 (two test sequences and 
characterization of those sequences). Fifth, a quality check of new DE&S data revealed that the data-
sampling rate was too low, so no further analysis of their data was appropriate. These concerns mean that 
DE&S lost control of staff time, equipment resources, schedule, cost for the subcontract, and quality of 
the deliverables. Consequently, the principal investigator decided not to continue the subcontract beyond 

ask 1, which was ORNL’s only commitment to DE&S under PY2 subcontract.  T
 
In the light of the continuing delays by DE&S during the first quarter of the second project year, ORNL 
initiated a subcontract with the Applied Research Laboratory at the Pennsylvania State University to 
acquire test sequence data. The ORNL principal investigator (Lee Hively) obtained the concurrence of Dr. 
Madeline Feltus (DOE/NE-20) on 9 January 2002, before proceeding with this second subcontract, which 
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was set in place on 12 February 2002. Deliverables from PSU were received by ORNL in a timely fashion 
and were of high quality. No further programmatic difficulties were encountered during this project. 

hese issues did not impact cost performance or project schedule. 
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Figure 1: Typical baseline EPRI data versus time from the Allis Chalmers motor. Top three plots show 
the three-phase voltages (Vi). Middle three plots show the three-phase currents (Ii). The sinusoidal 
variation in these plots corresponds to 60 Hz. The bottom plot shows instantaneous power, P, as the sum 
of the products of the three-phase currents times the corresponding voltages. 
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Figure 2: Plots of the four nonlinear dissimilarity measures for the airgap-offset seeded-fault electrical 
power data, with the following parameters: d=3, S=56, w=573, λ=88, N=12000, B=5. Dataset #1 is for the 
nominal (no fault) state. Datasets #2-3 are for two different airgap-offset faults. Stars (*) show the 
dissimilarity values with the straight linear added as an aid for interpretation of the graphs. 
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Figure 3: Phase-space dissimilarity measures (rows) for the airgap-offset seeded-fault from individual 
three-phase voltages (columns), with the same parameters as Fig. 2. Dataset #1 is for the nominal (no 
fault) state. Datasets #2-3 are for two different airgap-offset faults. 
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Figure 4: Phase-space dissimilarity measures (rows) for the airgap-offset seeded-fault from individual 
three-phase currents (columns), with the same parameters as Fig. 2. Dataset #1 is for the nominal (no 
fault) state. Datasets #2-3 are for two different airgap-offset faults. 
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Figure 5: Phase-space dissimilarity measures (rows) for the airgap-offset seeded-fault from each 
component of three-phase power, IiVi (columns), with the same parameters as Fig. 2. Dataset #1 is for the 
nominal (no fault) state. Datasets #2-3 are for two different airgap-offset faults. 
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Figure 6: Results for EPRI air-gap seeded fault from vibration power -- (a) Vibration power versus time 
(milliseconds); (b) minimum (PN), absolute average deviation (a), standard deviation (σ), and maximum 
(PX) in vibration power versus test number; (c) skewness (s) and kurtosis (k) versus test number; (d) 
average number of time steps per cycle (m) versus test number; (e) first zero in the autocorrelation (Z1) 
and first minimum in the mutual information function (M1) versus test number; (f) correlation dimension 
(D) versus test number; and (g) Kolmogorov entropy (K) versus test number.  
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Figure 7: Plots of the four nonlinear dissimilarity measures for the airgap-offset seeded-fault vibration 
power data, with the following parameters: d=3, S=3, λ=11, N=12000, B=5. Dataset #1 is for the nominal 
(no fault) state. Datasets #2-3 are for two different airgap-offset faults. 
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Figure 8: Plots of the four nonlinear dissimilarity measures for the broken-rotor seeded-fault from 
electrical power. The exponential rise in the severity of the seeded faults is shown as an almost linear rise 
(solid line) in the logarithm of all four dissimilarity measures (*) for the chosen set of phase-space 
parameters. 
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Figure 9: Results for EPRI broken-rotor seeded fault from vibration power -- (a) Vibration power versus 
time (milliseconds); (b) minimum (PN), absolute average deviation (a), standard deviation (σ), and 
maximum (PX) in vibration power versus test number; (c) skewness (s) and kurtosis (k) versus test 
number; (d) average number of time steps per cycle (m) versus test number; (e) first zero in the 
autocorrelation (Z1) and first minimum in the mutual information function (M1) versus test number; (f) 
correlation dimension (D) versus test number; and (g) Kolmogorov entropy (K) versus test number.  
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Figure 10: Plots of the four nonlinear dissimilarity measures for the broken-rotor seeded-fault from 
vibration power for the following phase-space parameters: d=3, S=130, λ=21, B=5, N=12000. 
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Figure 11: The four nonlinear dissimilarity measures for the turn-to-turn short seeded-fault from 
electrical power data. Dataset #1 is for the nominal (no fault) state. Dataset #2 is for the 2.7-ohm short. 
Dataset #3 is for the 1.35-ohm short. The straight line is the least-squares fit to the points (*) for the best 
set of phase-space parameters: S=129, d=3, λ=1, and w=221. 
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Figure 12: Results for EPRI turn-to-turn seeded fault from vibration power -- (a) Vibration power versus 
time (milliseconds); (b) minimum (PN), absolute average deviation (a), standard deviation (σ), and 
maximum (PX) in vibration power versus test number; (c) skewness (s) and kurtosis (k) versus test 
number; (d) average number of time steps per cycle (m) versus test number; (e) first zero in the 
autocorrelation (Z1) and first minimum in the mutual information function (M1) versus test number; (f) 
correlation dimension (D) versus test number; and (g) Kolmogorov entropy (K) versus test number. 
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Figure 13: The four nonlinear dissimilarity measures for the turn-to-turn short seeded-fault from 
vibration power data. Dataset #1 is for the nominal (no fault) state. Dataset #2 is for the 2.7-ohm short. 
Dataset #3 is for the 1.35-ohm short. This result is for the best set of phase-space parameters: S=2, d=6, 
λ=57, B=5, and N=12000. 
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Broken teeth 

Sheared shaft 

Figure 14: Illustration of the end-of-life failure in PSU Run #36, including pinion damage, sheared shaft, 
and broken teeth. 
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Figure 15: Raw data for PSU MDTB Run #36 for each of the three acceleration directions (Ai), over 
successively shorter time scales to show the complex, nonlinear features. 
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Figure 16: Vibration power for PSU MDTB Run #36 over successively shorter time scales, showing 
complex, nonlinear features. 
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Figure 17: Traditional nonlinear measures for the MDTB Run #36 accelerated failure test from vibration 
power data: (top) correlation dimension, (middle) Kolmogorov entropy, and (bottom) first minimum in 
the mutual information function, M1. 
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Figure 18: Phase-space dissimilarity measures versus time for the MDTB accelerated failure test (Run 
#36) from vibration power data: (a) – (d) the four renormalized PSDM; (e) composite measure, Ci, of the 
four PSDM; (f) end-of-life indicator, G (solid), running maximum of G (dashed), and ratio, r, of 
successive maxima (-.-) in G. Note that the vertical axis is the log10 of the parameter in subplots (a)-(f), 
and that 3log10(r) is plotted in (f) for clarity. The phase-space parameters are S=274, d=2, and λ=1, which 
are identical to those used for analysis of PSU MDTB data in PY2 to show consistency. 
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Figure 19: Illustration of the end-of-life failure in PSU Run #37, including pinion damage and broken 
teeth. 
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Figure 20: Traditional nonlinear measures for the MDTB Run #37 accelerated failure test from vibration 
power data.  
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Figure 21: Phase-space dissimilarity measures versus time for the MDTB accelerated failure test (Run 
#37) from vibration power data: (a) – (d) the four renormalized PSDM; (e) composite measure, Ci, of the 
four PSDM; (f) end-of-life indicator, G (solid), running maximum of G (dashed), and ratio, r, of 
successive maxima (-.-) in G. Note that the vertical axis is the log10 of the parameters in subplots (a)-(f), 
and that r/2 is plotted  in (f) for clarity. The phase-space parameters are S=274, d=2, and λ=1, which are 
identical to those used for analysis of PSU MDTB data in PY2 to show consistency. 
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Figure 22: Illustration of the end-of-life failure in PSU Run #38, showing broken/rounded-off teeth on 
both the gear and pinion. 
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Figure 23: Traditional nonlinear measures for the MDTB Run #38 accelerated failure test from vibration 
power data: (top) correlation dimension, (middle) Kolmogorov entropy, and (bottom) first minimum in 
the mutual information function. 
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Figure 24 Phase-space dissimilarity measures versus time for the MDTB accelerated failure test (Run 
#38) from vibration power data: (a) – (d) the four renormalized PSDM; (e) composite measure, Ci, of the 
four PSDM; (f) end-of-life indicator, G (solid), running maximum of G (dashed), and ratio, r, of 
successive maxima (-.-) in G. Note that the vertical axis is the log10 of the parameter in subplots (a)-(f), 
and that 0.4r is plotted  in (f) for clarity. The phase-space parameters are S=274, d=2, and λ=1, which are 
identical to those used for analysis of PSU MDTB data in PY2 to show consistency. 
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Figure 25: Illustration of the end-of-life failure in PSU Run #39, showing broken/rounded-off teeth on 
both the gear and pinion. 
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Figure 26: Phase-space dissimilarity measures versus time for the MDTB accelerated failure test (Run 
#39 at 2X load) from vibration power data: (a) – (d) the four renormalized PSDM; (e) composite measure, 
Ci, of the four PSDM; (f) end-of-life indicator, G (solid), running maximum of G (dashed), and ratio, r, of 
successive maxima (-.-) in G. Note that the vertical axis is the log10 of the parameter in subplots (a)-(f). 
The phase-space parameters are S=274, d=2, and λ=1, which are identical to those used for analysis of 
PSU MDTB data in PY2 to show consistency. 
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Figure 27: Phase-space dissimilarity measures versus time for the MDTB accelerated failure test (Run 
#39 at 3X load) from vibration power data: (a) – (d) the four renormalized PSDM; (e) composite measure, 
Ci, of the four PSDM; (f) end-of-life indicator, G (solid), running maximum of G (dashed), and ratio, r, of 
successive maxima (-.-) in G. Note that the vertical axis is the log10 of the parameter in subplots (a)-(f). 
The phase-space parameters are S=274, d=2, and λ=1, which are identical to those used for analysis of 
PSU MDTB data in PY2 to show consistency. 
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Figure 28: Results for PSU shaft-crack seeded fault: (a) vibration power (P) versus time (milliseconds); 
(b) minimum (PN), negative of the absolute average deviation (-a), standard deviation (σ), and maximum 
(PX) of P for each test; (c) skewness (s) and kurtosis (k); (d) number of time steps per cycle (m); (e) first 
minimum in the mutual information function (M1) and first zero in the autocorrelation (Z1); (f) correlation 
dimension (D); and (g) Kolmogorov entropy (K). 
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Figure 29: The four PSDM versus cut depth for the shaft-crack seeded-fault from vibration power data. 
This result is for the best set of phase-space parameters: S=2, d=4, λ=23, B=10, and N=100,000. 
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Figure 30: Results for PSU turn-to-turn seeded generator fault: (a) vibration power (P) versus time 
(milliseconds); (b) minimum (PN), negative of the absolute average deviation (-a), standard deviation (σ), 
and maximum (PX) of P for each test; (c) skewness (s) and kurtosis (k); (d) number of time steps per cycle 
(m); (e) first minimum in the mutual information function (M1) and first zero in the autocorrelation (Z1); 
(f) correlation dimension (D); and (g) Kolmogorov entropy (K). 
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Figure 31: Predicted daily average wholesale electricity price forecast for 20022 
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Figure 32: Cost of Lost Electricity Generation vs. Days Delay in Maintenance 

 

 



 55

 
Figure 33: Typical Centrifugal Charging Pump Installation 

 
 
 
 
 
 

 
Figure 34: Basic Design of Centrifugal Charging Pump (Actual Pump: 11 stages) 
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Crack Location

         Figure 35: Cross-section of Cracked Shaft    Figure 36: Reactor Coolant Pump  
                       Model with Crack Location 
 
 

 



 57

NERI Quarterly Progress Report 
Forewarning of Failure in Critical Equipment at Next-Generation Nuclear Power Plants 

NERI Project #2000-0109 
August 2000–September 2003 

 

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

$K
 S

P
E

N
T(

-.)
   

  L
IN

E
A

R
(-)

PROJECT MONTH

NERI2000-109 COSTS

 
 

Figure 37: Cost Performance over Project Life 
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APPENDIX A: Description of Time-Serial Analysis Methods 
 
Section A.1 describes removal of artifacts from the data. Section A.2 defines conventional statistics. 
Section A.3 discusses traditional nonlinear measures. Section A.4 explains phase-space dissimilarities. 

A.1 ARTIFACT REMOVAL 

Data frequently include artifacts, such as sinusoidal variations in three-phase voltage and current. We 
remove essentially all of these artifacts with a novel zero-phase quadratic filter [Hively et al., 1995].  This 
filter uses a moving window of 2w + 1 points of raw data, ei, with the same number of data points, w, on 
either side of a central point.  We fit the data to a quadratic equation, F(ti) = a1Ti

2 + a2Ti + a3, with Ti = ti – 
tc, and tc as the time at the central point of the moving window.  We obtain the best fit to the data by 
minimizing the function, Ψ=Σi [F(t) – ei]2. The sum is over the 2w + 1 points in the moving window.  The 
minimum in Ψ is found from the condition ∂Ψ/∂ak = 0, which yields three linear equations in three 
unknowns.  The window-averaged signal is the fitted value at the central point, F(tc = ti) = a3. The sums 
over odd powers of Ti are zero; symmetric sums over even powers of Ti (over i from –w to w) can be 
converted to sums from 1 to w, giving a window-averaged solution for the artifact signal, 
                                 w              w 

  F(t = tc) = [3(3w2 + 3w – 1)Σ ei+c – 15Σ i2 ei+c] / (4w2 + 4w – 3)(2w + 1).    (A.1) 
                              i=-w            i=-w 

Sums over even powers of i can be explicitly evaluated with standard formulas for Σi i2 and Σi i4 
[Gradshteyn and Ryzhik, 1965].  The effort to evaluate Eq. (A.1) can be reduced further by computing the 
sums initially with c = w + 1, and then using recursions thereafter for c > w + 1 [Hively et al., 1995].  
Application of this filter to the N-point set of ei-data yields N – 2w points of artifact data, fi = F(tc = ti). 
The residue, xi = ei – fi, has essentially no artifact. We subsequently use only the artifact-filtered data, xi. 
 
A.2 CONVENTIONAL STATISTICAL MEASURES 

The analysis begins a process-indicative scalar signal, x, typically with unknown dynamical details. The 
signal is sampled at equal time intervals, τ = 1/fs, starting at an initial time, t0, yielding a sequence of N 
points, x  = x(t0 + iτ).  One useful linear measures is the mean, x , or average over the N data points: i

           N 

      x  = Σ xi / N.                   (A.2) 
           i=1 

The second is the sample standard deviation (σ), which follows from Eq. (A.2): 

( ) (22

1
/ 1

N

i
i

x x N
=

σ = − −∑ ).
                   (A.3) 

Equation (A.3) is the second moment about the mean. The third moment about the mean is skewness, s: 

( )3 3

1
/ .

N

i
i

s x x N
=

= −∑ σ
                 (A.4)  

A fourth moment about the mean is kurtosis, k: 

( )4 4

1
/ 3

N

i
i

k x x N
=

= − σ∑ .−
                    (A.5) 

Real data have significant values for skewness and kurtosis, while Gaussian random data have values that 
are not significantly different from zero [Abramowitz and Stegun, 1965]. A large positive (negative) 
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skewness corresponds to a longer, fatter tail of the data distribution about the mean to the right (left). 
Kurtosis measures the flattening (negative k) or excess peakedness (positive k) about the mean. 

Another measure involves counting the number of times, nc, that the signal crosses the mean. Two 
sequential mean crossings delimit one-half of a wave period, implying for nc >>1 that the average number 
of time steps per wave cycle (m), or equivalently the inverse of the average frequency, is: 

m = N/[(nc - 1)/2] = 2N/(nc –1) ≈ 2N/nc .                 (A.6) 
 
These measures provide little (if any) discrimination of change; we include them only for comparison. 
 
A.3 TRADITIONAL NONLINEAR MEASURES 
 
Various nonlinear measures characterize process dynamics [Kantz and Schreiber, 1997; Rezek and 
Roberts, 1998]. We discuss three, against which we compare the dissimilarity indicators. Specifically, we 
use: the first minimum in the mutual information function to measure de-correlation time, the correlation 
dimension to measure dynamic complexity, and the Kolmogorov entropy to measure of predictability. 
 
The mutual information function (MIF) is a nonlinear version of the (linear) autocorrelation and cross-
correlation functions and was originally developed by Shannon and Weaver (1949) with subsequent 
application to time series analysis by Fraser and Swinney (1986). The MIF measures the average 
information (in bits) that can be inferred from one measurement about a second measurement and is a 
function of the time delay between the measurements.  Univariate MIF measures predictability within the 
same data stream at different times.  Bivariate MIF measures predictability of one data channel, based on 
measurements in a second signal at different times.  Here, we use the first minimum in the univariate 
MIF, M1, giving the average time for xi to be independent of x 

j . System entropy, H, defines MIF, I(q, r): 
  

,),()()(),(),( qrHrHqHqrIrqI −+==

∑−=
i

ii qPqPqH ,)](log[)()(
           (A.7) 

                (A.8) 

∑−=
ji

jiji rqPrqPrqH
,

.)],(log[),(),(
             (A.9) 

 
One signal has data, Q = {q1, q2, .  .  , qN} with occurrence probabilities P(q1), P(q2), .  .  .  , P(qN). A 
second signal has data, R = {r1, r2, .  .  .  , rN }, having a time delay relative to the qi values, with 
occurrence probabilities P(r1), P(r2), .  .  .  , P(rN). The function P(qi, rj) is the joint probability of both 
tates occurring simultaneously. H and I are in units of bits if the logarithm is taken in base two. s

 
The maximum-likelihood correlation dimension, D, [Takens 1984; Schouten et al.  1994a] is: 

           (A.10) ,)]/1/()//ln[()/1(
1

000

−







−−−= ∑ nnijMD δδδδδδ
 ij

where M is the number of randomly sampled point pairs; δij is the maximum-norm distance between the 
(randomly chosen) i – j point pairs, as defined in Eq. (A.12) below.  The distance (scale length) δn is 
associated with noise as measured from the time serial data.  Note that the distances are normalized with 
respect to a nominal scale length δ0, which is chosen as a balance between sensitivity to local dynamics 
(typically at δ0

 ≤5a) and avoidance of excessive noise (typically at δ0
 ≥ a).  Here, the symbol a denotes the 

absolute average deviation as a robust indicator of variability [Schouten et al.  1994a] in the data, 
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where x is the mean of xi over the window of N points.  The distances δij are defined by 

     
,max

10 kjkimkij xx ++−≤≤
−=δ

                 (A.12) 
where m is the average number of points per cycle, as determined by Eq. (A.6). 
 
Kolmogorov entropy, K, measures the rate of information loss per unit time, or (equivalently) the degree 
of predictability. Positive, finite entropy is generally considered a clear demonstration that the time series 
and its underlying dynamics are chaotic. A very large entropy indicates a stochastic (nondeterministic) 
and therefore totally unpredictable phenomenon. K-entropy is the average time for two points on an 
attractor to go from an initial separation δ ≤ δ0 to a separation of more than that distance (δ  > δ 

0). We use 
the maximum-likelihood K-entropy of Schouten et al.  (1994b), 
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                    (A.14) 
with bi as the number of time steps for two points, initially within δ ≤ δ0,  to diverge to δ > δ 

0. 
 
Several problems arise in the use of these measures for condition change.  The most serious is that these 
nonlinear measures are expressed as a sum or integral over (a region of) the PS, thus averaging out all 
dynamical details into a single number. Two (very) different dynamical regimes may lead to very close, 
or even equal measures. The situation is even murkier for noisy dynamics, in which case reliable 
determination of the nonlinear measures is very difficult.  The second problem originates from the usual 
definitions of K-entropy and correlation dimension in the limit of zero scale length. However, all real data 
have noise, and even noiseless model data is limited by the finite precision of computer arithmetic.  Thus, 
we choose a finite scale length that is larger than the noise (δ0 = 2a), at which to report the values of K 
and D. These finite-scale values of K and D are smaller than expected for the zero-scale-length limit (δ0 
→ 0) and cannot capture dynamical complexity at length scales smaller than δ0.  A third difficulty is 
presented by the definition of some nonlinear measures as functionals of the distribution functions, 
because they do not satisfy the mathematical definition of distance. Specifically, symmetry and the 
triangle inequality may be violated [Quin Quiroga et al., 2000]. Such measures cannot define a metric in 
the mathematical sense, although they may indicate change that must be made precise for each situation. 
These traditional nonlinear measures characterize global features of the dynamics, and can clearly 
distinguish between regular and chaotic dynamics. However, they do not reveal slight dissimilarities 
between dynamical states. The same is true for other global indicators, such as fractal dimension, and 
Lyapunov exponents. This lack of discrimination occurs because such traditional measures average (or 
integrate) the dynamical features over the attractor, thus providing only a global picture of long-term 
dynamical behavior. The phase-space dissimilarity measures (discussed below) avoid these problems, and 
thus provide sensitive discrimination of condition change for forewarning of machine failure. 
 
A.4 PHASE-SPACE DISSIMILARITY MEASURES 
 
We begin this analysis by conversion of the continuously variable artifact-filtered signal, xi, into discrete 
signal values (symbolization), si, which is one of S different integers: 
 

.1)]/()([0 minmaxmin −≤−−=≤ SxxxxSINTs ii           (A.15) 
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The function (INT) converts a decimal number to the closest lower integer, and xmin and xmax denote the 
minimum and maximum values of xi, respectively, over the base case (reference data).  We require that 
si(xi = xmax) = S – 1 in order to maintain exactly S distinct symbols.  Thus, Eq. (A.15) creates symbols that 
are uniformly distributed between the minimum and maximum in signal amplitude (uniform symbols). 
 
An alternative is equiprobable symbols.  These symbols are formed by ordering the base case time-serial 
data from the smallest to largest value.  The first N/S of these ordered data values correspond to the first 
symbol (0).  Ordered data values (N/S)+1 through 2N/S correspond to the second symbol (1), and so on up 
to the last symbol, S-1.  Consequently, equiprobable symbols have non-uniform partitions in the signal 
amplitude so that each symbol has the same occurrence frequency (N/S) of xi values.  Much structure is 
inherent in uniform symbols before beginning the PS reconstruction, but no PS structure arises from 
equiprobable symbols.  Thus, a key advantage of equiprobable symbols is that dynamical structure arises 
only from the phase-space reconstruction, as described below. Large negative and large positive values of 
xi have little effect on equiprobable symbolization, but dramatically change the partitions for uniform 
symbols. Moreover, information theoretic measures (e.g., mutual information function) are a smooth 
function of the reconstruction parameters for equiprobable symbols, but are noisy functions for uniform 
symbols. We find that equiprobable symbols discriminate condition change better than uniform symbols. 
 
PS reconstruction [Eckmann and Ruelle, 1985] converts time-serial si-data into a geometric form via the 
use of time-delay vectors to unfold the underlying dynamics. The single-channel reconstruction form is: 
 

y(i) = [s , si i+ i+(d–1)

i i+λ i+(d–1)λ i i+λ i+(d–1)λ

r 

quently search in 
e vicinity of this optimally-sensitive location for improved discrimination of change.  

ase case. In particular, we 
easure the dissimilarity between Qi with Ri by the χ  statistic and L1 distance: 

λ , . . . , s λ].                (A.16) 
 

Local (single-channel) processes exchange dynamical information with one another. For example, the 
components of three-phase voltages and currents are dynamically related by electrical interactions. 
Likewise, the components of three-dimensional acceleration depend nonlinearly on one another through 
mechanical interactions. This nonlinear inter-relation implies that multi-channel PS reconstruction can 
xtract additional information [S. Boccaletti, et al., 2002]. The multi-channel PS vector has the form: e

 
 y(i) = [s(1) , s(1)  , … , s(1) , …, s(C) , s(C)  , … , s(C) ].     (A.17)  

 
Here, s(1) denotes symbols from the first data channel, and s(C) denotes symbols from the Cth channel. 
The PS reconstruction unfolds the underlying dynamics to extract event forewarning on the basis of the 
time delay, λ, dimensionality, d, and signal precision, S. If the dimension, d, is too large, then over-fitting 
can result. Moreover, different process observables contain unequal amounts of dynamical information 
[Letellier et al., 1998]. Thus, PS reconstruction may be easier from one variable, but more difficult o
ven impossible from another. Our analysis seeks to balance these caveats for finite-length noisy data.    e

 
Symbolization discretizes the PS into Sd bins. We then count the number of PS points occurring in each 
bin to obtain the distribution function (DF) as a discretized density on the attractor.  We denote the 
population of the ith bin of the distribution function, Qi, for the base case (nominal operational state), and 
Ri for a test case (subsequent operational state), respectively. The parameters (w, S, N, d, λ) depend on the 
specific data. Preliminary analysis systematically varies each parameter with the others fixed, to obtain 
optimum sensitivity of the measures to process changes for each test sequence. We subse
th
  
Quantification of condition change requires comparison of the test case to the b

2m
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                 (A.18) 
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i                     (A.19) 

where the summations in both equations run over all of the populated PS cells. The choice of these 
measures is based on the following considerations. The χ2 statistic is one of the most powerful, robust, 
and widely used tests to measure discrepancies between two distribution functions. The χ2 statistic is 
obviously symmetric, but does not always satisfy the triangle inequality. Thus, it does not define a 
distance in the mathematical sense. The L1 distance is the natural metric for distribution functions by its 
direct relation to the total invariant measure on the attractor and does define a mathematical distance. 
These complementary measures account for changes in the geometry and visitation frequency of the 
attractor. Consistent calculation of χ2 and L requires that the base case and test case contain the same 

umber of points, identically sampled; otherwise the distribution functions have to be properly rescaled.   

ctors, as 
rescribed by the dynamics, y(i) → y(i + 1). The result is a connected-phase-space (CPS) vector: 

 

r the base case 
 measures are the L1-distance and χ2 statistic:  

       
)ij

n
 
We can capture process flow [Abarbanel, 1996] by adjoining two successive d-dimensional PS ve
p

Y(i) = [y(i), y(i + 1)]                  (A.20) 
Symbolization of the xi-data discretizes this 2d-dimensional CPS into S2d bins. As before, we count the 
number of CPS points occurring in each bin to obtain Q and R, which are the CPS DFs fo
and test case, respectively. The dissimilarity

( ) (22 /c ij ij ijx Q R Q R= − +∑
ij

|c ijL Q R= −∑
                (A.20) 

| .ij
ij                    (A.21) 

The subscript c indicates the connected distribution function measure. The CPS measures have higher 
discriminating power than their non-connected counterparts, because they satisfy the following four 

equalities: χ2 ≤ L, χc
2 ≤ Lc,  L ≤ Lc , and χ2 ≤ χc

2. Alternative forms are: χ2 ≤ L ≤ Lc and χ2 ≤ χc
2 ≤ Lc. in

 
Unbiased determination of the χ2 statistic requires statistical independence between various samples.  
However, the (C)PS points depend on one another due to reconstruction from time delay vectors with 
dynamical structure [Diks et al., 1996]. The resulting statistical bias is avoidable by averaging 
contributions to Eqs. (A.18)-(A.21) over values of y(j) or Y(j) which satisfy |i – j| < Λ [Diks et al., 1996], 

where Λ is some largest typical correlation time lag.  We tested the bias in typical data by sampling every 
Λ-th connected phase space point for 4 ≤ Λ ≤ 23, resulting in Λ different samples for the base case (Qi) 
and for each cutset (Ri).  We then averaged the sampled χ2 values over the Λ2 different combinations of 
distribution functions for the base case and test case cutsets. As expected, a decrease proportional to 1/Λ 
occurs in the sampled χ2 values, because the number of data points contributing to χ2 decreases in the 
same proportion. The trend over time in sampled χ2 values is the same as in χ2 values without sampling, 
showing that no bias is present. Thus, we use unsampled χ2 values for the remainder of this work as a 
relative measure, rather than as an unbiased statistic for accepting or rejecting a null statistical hypothesis 

ively et al., 1999]. [H
 
Use of the dissimilarity measures on finite length, noisy data requires a consistent statistical 
implementation and interpretation.  We use the first B non-overlapping cutsets as base cases.  The choice 
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of this number of basecase datasets should strike a judicious balance between a reasonably short base case 
period to capture quasi-stationary, “normal” dynamics and a sufficiently long period for statistical 
significance. We typically use B = 5 for the noiseless, model generated data for fixed dynamical 
conditions, where the variability arises only from the location in and the discrete sampling of the PS.  On 

e other hand, we use B = 10 for noisy machine data to provide a larger statistical sample.    

easures will 
dicate a clear departure from the base case dynamics, and provides forewarning of failure. 

. A weakness of the 
ethod is the need for much, high-quality, process-indicative data for the analysis. 

. No user 
uide or manual exists for this software, due to its ongoing evolution for research-class analysis. 

 

th
 
The disparate range and variability of various nonlinear measures are difficult to interpret (especially for 
noisy data), so we need a consistent means of comparison.  Thus, we renormalize the nonlinear measures 
[Hively et al., 1999 and 2000].  For each nonlinear measure, V = {D, K, M1, L, Lc, χ2, and χc

2}, we define 
Vi as the value of the nonlinear measure for the ith cutset. V is the mean value of the nonlinear measure 
over the base cases, with a corresponding sample standard deviation σ.  The renormalized form is then 
U(V) = |Vi – V|/σ, which measures the number of standard deviations that the test case deviates from the 
base case mean.  Several successive occurrences, NOCC, above a threshold, Uth, provide a clear indication 
of condition change. Alternatively, a systematic rise in the phase-space dissimilarity m
in
 
The methodology and corresponding results have been published in recent peer-reviewed journal papers 
[Hively, Gailey, Protopopescu, 1999; Hively, Gailey, Protopopescu, 2000 and 2000a; Protopopescu, 
Hively, Gailey, 2001; Hively and Protopopescu, 2003 and 2003a]. The strength of the approach is 
accurate and robust event forewarning from complex, nonlinear time-serial data
m
 
The nonlinear analysis in this Appendix is implemented as research-class FORTRAN-77. This software 
was developed and used on a variety of different computers and operating systems since 1994: IBM 
RISC/6000 under IBM’s version of UNIX, DEC-alpha under DEC’s version of UNIX, Intel-PII under 
Windows NT and Windows 2000, and AMD-AthlonTM and Intel Pentium-4TM under Windows2000TM and 
Windows-XPTM. The software required little or no change to move from one computer and/or operating 
system to the next. The program executable size is typically 5 – 55 MB. The dataset sizes have a typical 
range of 100 MB to 1.5 GB, necessitating a correspondingly large, fast harddrive for data storage
g
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APPENDIX B: Statement of Work for Subcontract with PSU/ARL 
 
The U.S Department of Energy has funded an ORNL project, “Forewarning of Failure in Critical 
Equipment at Next-Generation Nuclear Power Plants.” The goal is forewarning of failure via ORNL’s 
nonlinear technology, using experimental data from typical equipment. We seek forewarning for different 
kinds of equipment, as well as consistency for the same fault(s) in the same equipment. The Applied 
Research Laboratory (ARL) is a center of excellence at the Pennsylvania State University. ARL provided 
ORNL with machinery failure data in support of this NERI2000-109 project during FY02. This statement 
of work describes three follow-on tasks under this same NERI project for FY03. The total cost of these 
three tasks will be no more than $100K. 
 
Task #1 involves documentation of the test plans, which will become appendices in the FY03 annual 
NERI report. The test plan(s) will specify the equipment to be tested (as in Section A.5 of Appendix A of 
the PY1 annual report), the test protocol for each failure mode (as in Section A.6.5 of Appendix A), and 
the data acquisition (as in Section A.7 of Appendix A). The deliverables are the test plans for each test 
sequence, which will be sent to ORNL before the start of testing. Table B1 summarizes the test apparatus, 
test parameters, and a general description of the test procedure for each experiment. 
 
 

TABLE B1: Summary of Test Sequences 
Fault Experiment Parameters Procedure 
Gear Gear ratio, torque, speed Run gearbox at constant speed with nominal load for 

break-in period, then increase load to 2X or 3X 
gearbox rating until gear failure 

Cracked shaft Crack depth Collect baseline data (speed, 3-axis vibration, motor 
V&A) with undamaged shaft.  Initiate shaft crack 
using EDM cut.  Collect data.  Grow crack using 
lateral bending fatigue apparatus. Repeat data 
collection.  Goal is to collect 10-20 iterations of crack 
growth per experiment. 

Generator – Field 
(rotor) 
deterioration 

Load, location of winding 
deterioration, leakage 
current 

Collect baseline data at each load condition (load 
conditions are dependent on available load resistors – 
TBD). Collect data for a series of increasing leakage 
currents.  Data collection will include 3-axis 
vibration, line voltages and currents, exciter field 
current, and generator field current. 

Generator – Stator 
deterioration 

ing 
tion, leakage 

current 
 

eakage 

 exciter field 

Load, location of wind
deteriora

Collect baseline data at each load condition (load 
conditions are dependent on available load resistors –
TBD). Collect data for a series of increasing l
currents.  Data collection will include 3-axis 
vibration, line voltages and currents,
current, and generator field current. 

Generator – Diode 
deterioration 

 diode, 
leakage current  

eakage 

 exciter field 
current, and generator field current. 

Load, polarity of Collect baseline data at each load condition (load 
conditions are dependent on available load resistors –
TBD). Collect data for a series of increasing l
currents.  Data collection will include 3-axis 
vibration, line voltages and currents,
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Task #2 will proceed immediately after completion of the applicable test plan from Task 1. This task 
involves ARL setting up and conducting a series of tests on mechanical and electrical equipment, as 
shown in Table B2, according to the test plan(s) from Task 1. The time-serial data for each test will be 
appropriate for the equipment and failure type (e.g., three-phase motor currents and voltages; tri-axial 
acceleration; torque and angular location; pressure and flow rate, etc.). The data for each snapshot in the 
test sequence should be sampled at no less than 50 kHz for 10 seconds (for a total of 500 000 data points). 
The goal of this task is acquisition of test sequences (TS), which refer to a unique combination of 
equipment and failure mode. Each TS will show the equipment initially in nominal operation, then with a 
small fault, and subsequently with successively larger faults until the equipment fails per test plan. The 
deliverables are the multi-channel digital datasets from each test sequence, provided on CD-ROM or 
DVD diskette, as appropriate. Table B2 shows an approximate schedule for completion of Task 2 testing. 
 

TABLE B2: Anticipated Test Schedule 
Test Duration Target Test Dates 
MDTB  3 weeks ea.  

gearbox 1  January, 2003 
gearbox 2  March, 2003 

Shaft Crack 1 month ea.  
Shaft 1  November, 2002 
Shaft 2  December, 2002 

Electrical Gen. 2 weeks ea.  
Rotor fault  February, 2003 
Stator fault  April, 2003 
Diode fault  May, 2003 

 
Task #3 will proceed during and after completion of Task 2. This task involves assessment of the ORNL 
forewarning technology, in terms of safety and cost impact for next generation nuclear power plants. The 
assessment metrics include forewarning time, decrease in unexpected failures, increased safety margins, 
and lower costs for operations and maintenance. ARL will draw on internal resources, knowledge of the 
nuclear power industry, results from past cost-benefit analyses for other condition monitoring 
applications, and existing reports by other organizations such as EPRI. The deliverable for this task will 
be documentation of the assessment methodology and results, in a form that is suitable for inclusion as an 
appendix in the FY03 NERI annual report. The delivery date is COB Thursday 31 July 2003. 
 

 



 68

APPENDIX C: Test Plan for Mechanical Diagnostics Test Bed in Support of NERI2000-109 
 
This document is the test plan for the Mechanical Diagnostics Test Bed (MDTB) at the Applied Research 
Laboratory (ARL) of the Pennsylvania State University (PSU). This plan describes the MDTB, the 
equipment to be tested, instrumentation and data acquisition equipment, and the test sequence protocol. 
This work is funded by Oak Ridge National Laboratory (ORNL) under the U.S. Department of Energy’s 
NERI2000-109 (Nuclear Energy Research Initiative) project.  
  

Test Bed 
 
Figure C.1 shows the MDTB, which is an ARL facility for the study of fault evolution in gearboxes. The 
alternating-current (AC) driver motor is rated at 30 HP and runs at a constant speed. The AC (absorption) 
motor is rated at 75 HP and applies a mechanical load (torque) to the gearbox. The maximum speed and 
torque are 3500 RPM and 225 ft-lbs, respectively. Speed is controlled by variation of the frequency to the 
driver motor with a digital vector unit. Torque is controlled by a similar vector unit to the absorption 
motor. The vector drives also provide output signals, which are sampled and stored. The set points for 
speed and torque are determined by analog signals (0-10 VDC) from the data acquisition computer.  The 
MDTB is capable of parallel or right angle gear motor mounts. 

Figure C.1:  Mechanical Diagnostics Test Bed 
   
The MDTB has the capability of testing single and double-reduction industrial gearboxes with gear ratios 
between 1.2:1 to 6:1, and with power in the range of 5 to 20 HP. Duty cycle profiles can be prescribed for 
variable speed and load. Test speeds to date have been fixed at 1750 RPM with variable load profiles that 
increase to maximum values of 2 to 5 times the rated torque of the test gearbox. The motors and gearbox 
are hard-mounted to minimize vibration, and are precision aligned via laser technology. The shafts can be 
connected with either flexible or rigid couplers. Torque limiting clutches are used on both sides of the 
gearbox to avoid excessive torque from gear jamming or bearing seizure. Torque cells on both sides of the 
gearbox monitor the overall and variable loads. Output data include: input power to the motors, root-
mean-square (RMS) currents, winding temperatures, motor speed, and generator torque. These signals 
allow automation and shutdown of motors directly through the controller PC. 
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Equipment to be Tested 
 
These tests also will use the MDTB to collect run-to-failure data on single-reduction gearboxes during the 
fault evolution cycle.  Table C.1 shows the characteristics of the gearbox that will be used for the two 
tests. Tables C.2 and C.3 show the gear mesh and bearing frequencies. 

 

Table C1: Gearbox Specifications 
Brand Dodge (R86001) 

Model Number APG Size 3 
Description Single Reduction Helical 
Ratio 1.5 
Rated Input Speed 1750 RPM 
Rated Output Torque 530 in-lbs 
Potential Failure Gear tooth breakage 

 
 

Table C.2: Dodge Gearbox Bearing Input and Output Frequencies -- 1.5 Gearbox Ratio 

Description Ball Bearing 
(Input - outer) 

Ball Bearing 
(Input - inner) 

Tapered Roller Bearing 
(Output - inner) 

Taper Roller Bearing 
(Output - outer) 

Part Number 6307 6309 15520/15578 2520/2581 
Inner Race Freq 29 Hz 29 Hz 19 Hz 19 Hz 
BPFO  86 Hz 89 Hz 178 Hz 176 Hz 
BPFI  147 Hz 145 Hz 133 Hz 135 Hz 
FTF  11 Hz 11 Hz 11 Hz 11 Hz 
BSF 52 Hz 57 Hz 54 Hz 61 Hz 

 

Table C.3:  Dodge Gearbox Gear Mesh Frequency (at 1750 RPM) 
Gearbox Size 3 – Ratio 1.5 875.5 Hz 
Gearbox Size 3 – Ratio 3.3 613.0 Hz 

 
Instrumentation and Data Acquisition Equipment 

 
Data is collected via a National Instruments (NI) PXI measurement system. Figure C.2 shows a typical 
system, including backplane, processor, control module, and data acquisition modules. These tests will 
use NI4472 dynamic signal acquisition and analysis modules (Fig. C.3). Each module has eight analog 
inputs with simultaneously-sampled, 24-bit, sigma-delta analog-to-digital (A/D) converters. Table C.4 
gives module operating characteristics, including the digital anti-aliasing filters. The maximum sampling 
rate is 102.4 kHz per channel. We will sample at 51.2 kHz for an alias-free bandwidth up to 23.2 kHz. 

he accelerometer resonance is >70 kHz, which will not interfere with the measurement bandwidth. T
 
The following data will be collected: (a) 3-axis acceleration, via 3 single-axis accelerometers on a 
gearbox mounting block; (b) input and output torque; and (c) input and output tachometer signal. Data 
will be sampled across all channels, and saved to a computer hard drive. Table C.5 gives the 
specifications for the single-axial accelerometer. Additional sensor measurements may be added on open 
data acquisition channels for consistency with earlier gearbox tests. The full sensor list will be provided in 
the post-run test description along with a drawing showing sensor placement. 
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Figure C.2:  NI PXI Measurement System    Figure C.3: NI Dynamic DAC Module 
 

Table C.4:  DAQ Module Specifications 
Channels per module 8 
A/D resolution 24 bits 
Dynamic range 120 dB 
Measurement bandwidth DC-45 kHz 
Coupling AC/DC 
Alias-free bandwidth: pass-band DC to 0.4535 fs 
Stop Band   0.5465 fs 
Alias rejection 110 dB 

 

Table C.5:  Accelerometer Specifications 
Sensor Name ICP Accelerometer 
Sensor Make PCB Piezotronics, Inc 
Sensor Model # 353B16 
Sensor Serial # TBD 
Sensor Type Quartz Shear Piezoelectric 
Sensor Volt Sensitivity 10 mV/g 
Measurement Range  ±500 g pk (± m/s2 pk) 
Frequency Range (±5%)  1 to 10 000 Hz 
Mounted Resonant Frequency  > or = 70 kHz 
Broadband Resolution 0.005 g rms (0,05 m/s2 pk) 
Conditioner Make PCB Piezotronics, Inc. 
Conditioner Model # 481A02 
Conditioner Gain 1 

 
Data Format 

 
Data will be in MatLabTM binary format. MatlabTM m-files also will be provided to read the information 
from the files. Data will be delivered to ORNL on either CDR or DVDR media. We expect that the total 
size (T) for a one, 10-second snapshot containing 11 sensor channels is estimated as follows: 
T = (10 seconds) x (51.2 k samples/s) x (4 bytes/sample/channel) x (11 channels) = 22.5 megabytes. 
Alternatively, storage of each channel as a separate file will yield a 2-MB file per channel per snapshot. 
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Test Protocol 
 
The test procedure is summarized below: 

1. Disassemble gearbox and drain out the lubrication oil; 
2. Index the gear if possible; 
3. Place identification labels on each gear tooth; 
4. Assemble the gearbox and refill with manufacturer-specified gear oil; 
5. Mount the gearbox to the test stand and perform a laser alignment; 
6. Attach all sensors to the gearbox and set up data acquisition system; 
7. Calibrate all sensors and save results with time stamps;  
8. Run the test matrix until failure; 
9. Perform a post-test laser alignment before gearbox removal; 
10. Disassemble and inspect the gearbox for characterization of the failure. 

Table C.6 shows the test matrix, including the intended test conditions. Data will be collected until failure 
of the gearbox or until the damage to the gearbox threatens to induce damage in other system 
components.  
 

Table C.6:  Test Matrix 

Test Condition Speed (RPM) Torque Duration Snapshot Rate 
1 1750 100% of rated 

(530 in-lbs) 
1 hour 1 snapshot/min  

2a 
(Run #36) 1750 200% of rated 

(1060 in-lbs) Until failure 1 snapshot/15 min  

2b 
(Runs #37-38) 1750 300% of rated 

(1590 in-lbs) Until failure 1 snapshot/min 
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Appendix D: Test Plan for Shaft-Crack Experiment 
 
 
 
 
 

 
Title: Seeded Crack Fault Test of Laboratory Bladed Disk Assembly 

 
Personnel: Brian Resor, Martin Trethewey, Ken Maynard 

 
 

Test Description 
 
One failure mode in a turbo-machine begins with a crack at the base of a rotating blade, eventually 
causing blade loss. This Appendix describes an experiment to simulate such a failure. PSU conducted the 
experiment on the Torsional Vibration Test Rig during 2003.  Figure D.1 shows the test rig. The objective 
was detection of dynamical changes with increasing crack size, thus simulating the change in dynamical 
frequencies due to crack initiation and growth. 

 
 

 

Torsional test rotor 

Vice 

Accelerometers 

Dynamic Signal Analyzer

Angstrom resolver and 
fiber optic probes 

Motor current and voltage 
transducers 

Figure D.1.  Motor testing equipment setup 
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Figure D.2 shows the rotor assembly, which 
has eight equally spaced threaded rods that 
simulate the blades. The rotor is driven at a 
fixed rotational speed by a fractional 
horsepower DC motor that was made by 
Bodine Electric Company; this particular 
motor is no longer manufactured. Typical 
values for the motor power supply are 4 
Volts and 2 Amps, depending on the rotor 
load. The DC power supply is by Sorenson 
Power Supplies, a Raytheon Company (part 
number DCR150-12B). 
 
Earlier PSU work simulated the crack 
growth by changing the lock-nut locations 
along the threaded rods. The present 
experiment is an extension of earlier PSU 
work, involving a sequence of tests with a 
progressively deeper machined “crack” to 
change the rod frequencies, instead of 
moving the lock nuts. Figure D.3 shows a typical “crack” at the base of one of the eight blades of the 
rotor. Wire electric discharge machining (EDM) cutting is used to produce the smallest possible cut to 
simulate a crack.  The wire diameter for these cuts is 0.010 inches and the over burn is approximately 
0.001 inches.  This adds up to a total cut width of 0.012 inches.  The cut depth can be controlled to within 
about 0.0005 inches. We anticipate ten datasets, beginning with the nominal (no cut) state and ending 
with a crack depth of 70% of the blade diameter. The cut location is as close to the blade root as was 
practical.  A fixture was created for Wire EDM machine, in which the whole bladed assembly (excluding 
shaft) is mounted. Computerized tooling controls the cut location and depth for each cut.  The depth of 
the first cut was measured from the point that the 0.010 inch wire came in contact with thread surfaces at 
the deepest point of the thread. 

Figure D.2. Simulated bladed disk assembly 

 
 

 

Wire EDM cut 

Figure D.3. Picture of blade cut 
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Test Protocol 
 
The test protocol is as follows: 
      1. Acquire test data (items 3-5, below) for the no-cut (nominal) state of the rotor assembly. 

2. Place an initial 0.010-inch cut in one rod and measure its depth. 
3. Measure the bending natural frequency of the seeded fault rod.  
4. Place the rotor assembly in the torsional vibration test stand. 
5. Run the test stand at fixed RPM and acquire the time-serial data from the system sensors. 
6. Remove the rotor assembly and increment the slot depth another 0.010 inch by EDM. 
7. Repeat steps 2 and 6 until a “failed” state is achieved (after nine successive EDM cuts). 

The vice in Fig. D.1 is used to hold the rotor assembly, while the “blade” static frequency is measured by 
placing the tip of the fiber optic probes very close to the end of the blade and plucking the blade. The 
probes measure the blade position versus time, which is analyzed in the DSA to determine the blade 
frequencies. Nominal disassembly-reassembly repeatability is about ± 0.3 Hz. Due the presence of 
occasional outliers, multiple disassembly-reassembly test runs will be performed. The data will be 
analyzed and the reassembly tests ceased only when it is concluded that a representative set of data has 
been acquired. 
 
Deliverables for this experiment include:  

1. Data for each of the seven tests of the rotor (one nominal state, plus six cuts). 
2. Experimental characterization of each test state. 

 
Data Acquisition 
 
Test data at each depth of cut include tri-axial acceleration in three orthogonal directions on one bearing 
pillow block. Torsional vibration data also will be acquired at 1.675 MHz via a fiber optic sensor and a 
180-tooth encoder wheel. Figure D.1 shows the data sensors. The data acquisition system uses a Hewlett 
Packard VXI Mainframe with an E1433A 8-channel data acquisition board with tachometer inputs.  Data 
is sent from the VXI Mainframe to a desktop PC using the HP E8491A firewire card. The desktop PC 
uses a software package called HP DAQ Express to manage the data acquisition.  Using this software 
along with the E1433 card, data are acquired at 196 kHz sample rate for a duration of 5.10204 seconds, 

ielding one million data points per snapshot. y
 

est Data T
 
PSU will provide test data in MatLabTM-formatted MAT-files for each wire EDM cut of the blade. Each 
data record will include: (channel 1) time stamp from the start of the snapshot (seconds), (channels 2-4) 
tri-axial acceleration (g), and (channel 5) rotational position (degrees). If other measurement units are 
used, conversion factors will be supplied, along with the appropriate offset and scaling factors. Data will 
be sent t TM

service. 
o ORNL on CD-ROM or DVD media, via Federal Express  or equivalent one-day-delivery 
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Appendix E: Test Plan for Generator Seeded Faults 
 
This appendix describes three types of seeded electrical faults in a 3-phase electrical generator, which is 
driven by an electric motor.  The generator is a Kato Engineering, Model A267890000, (5 kW, 3-phase, 
60 Hz, synchronous alternating current).  The drive motor is a Kato Engineering, Model D267880000 
(7.5 HP, synchronous, brushless, direct current). The three faults conditions are: (1) rotor turn-to-turn 
short circuit, (2) rectifier diode fault, and (3) stator turn-to-turn short circuit. The test procedure for each 
fault type is described in the subsequent paragraphs.  
 
Data are collected for each type of fault at different severity levels and under different load conditions. 
All loads are purely resistive, corresponding to different output powers between zero to 3,600 watts in 
increments of 1,200 watts. Data are collected using the National Instruments PXI data acquisition system, 
which also is used to collect data from the MDTB experiment (App. B).  Table E.1 lists the data for each 
test condition. Table E.2 shows the sensor details for current, voltage, and acceleration. 
 
 

Table E.1:  Data channels for generator fault tests 

File 
ext. 

Sample 
Rate 

Data Type Description 

IA 52 kHz Current Phase A line current 
IB 52 kHz Current Phase B line current 
IC 52 kHz Current Phase C line current 
VAB 52 kHz Voltage Phase AB line voltage 
VBC 52 kHz Voltage Phase BC line voltage 
VCA 52 kHz Voltage Phase CA line voltage 
A01 52 kHz Acceleration x-axis acceleration 
A02 52 kHz Acceleration y-axis acceleration 
A03 52 kHz Acceleration z-axis acceleration 
VAN 52 kHz Voltage Phase A line-to-neutral voltage 
VBN 52 kHz Voltage Phase B line-to-neutral voltage 
VCN 52 kHz Voltage Phase C line-to-neutral voltage 
IEXC 52 kHz Current Exciter current 
VNG 52 kHz Voltage Neutral-to-ground voltage 

 
 

Table E.2:  Generator seeded-fault sensors 

Data Type Transducer 
Current AYA model CT8-50-1 Current Transformer with 1/2 ohm, 1 watt, 1% sense resistor 
Voltage LEM CV3-500 voltage transducer, 50:1 voltage reduction with +/- 15 V supply 
Acceleration PCB Piezotronics, Inc Model 353B16 ICP 3-axis Accelerometer 

 
 
Data file names correspond to the snapshot number, followed by the file extension for the corresponding 
fault. For example, 0.A01 corresponds to the zeroeth (0) snapshot (baseline data) for acceleration data (A) 
in the first (01) direction; 1.A01 is for the first fault snapshot for acceleration (A) in the first (01) 
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direction, etc. Testing begins with the acquisition of baseline (no fault) conditions for each load level, as 
shown in Table E.3. 
 
The rotor fault test uses one large connector wire (8 or 10 gauge) from Terminal 1 to Terminals 2 - 6 on 
the generator, corresponding to shorting out a specified number of turns on pole number three of the 
generator, as shown in Table E.4. Use of Terminals 7 – 9 is unnecessary, because the readings are too 
low, too high, or non-existent in these cases. Rotor test conditions are listed in Table E.4. 
 

Table E.3:  Snapshot numbers for no fault baseline tests. 

Load (W) Snapshot 
0 0,1 

1200 2,3 
2400 4,5 
3600 6,7 

0 8,9 
 

 
Table E.4:  Snapshot numbers for rotor fault tests. 

Rotor Fault Condition Load 
(W) T1-2 

5 Turns 
T1-3 
10 Turns 

T1-4 
25 Turns 

T1-5 
50 Turns 

T1-6 
100 Turns 

0 10,11 20,21 30,31 40,41 50,51 
1200 12,13 22,23 32,33 42,43 52,53 
2400 14,15 24,25 34,35 44,45 54,55 
3600 16,17 26,27 36,37 46,47 56,57 
0 18,19 28,29 38,39 48,49 58,59 

 
Three types of diode faults were simulated.  The first fault uses one 3-ohm 100-watt resistor to create a 
short circuit across the positive diode.  The load is attached to generator set. The leakage current is about 
1 ampere. The second diode fault disconnects the diode creating an open circuit.  The third fault uses a 
variable resistor in series with the diode to create different levels of leakage current.  Table E.5 shows the 
corresponding test matrix. 
 

Table E.5:  Snapshot numbers for diode fault tests. 

Load Diode Fault 
 S.C. O.C R=1 Ω R=2 Ω R=3 Ω R=4 Ω R=5 Ω R=6 Ω 
No load 60,61 70,71 80,81 90,91 100,101 110,111 120,121 130,131 
1200 W 62,63 72,73 82,83 92,93 102,103 112,113 122,123 132,133 
2400 W 64,65 74,75 84,85 94,95 104,105 114,115 124,125 134,135 
3600 W 66,67 76,77 86,87 96,97 106,107 116,117 126,127 136,137 
No load 68,69 78,79 88,89 98,99 108,109 118,119 128,129 138,139 

 
 
The stator fault uses two 16-ohm, 6-Amp, 576-watt slide resistors to short several windings in one stator 
leg. This shunt resistance is gradually lowered to simulate a short circuit in the stator leg. The test 
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protocol is as follows: (a) reconnect the 50-ohm shunt resistor; (b) connect the load to the generator set; 
(c) connect resistors in series to terminals T-31 to T-35 on terminal block for line 3. The leakage current 
should not exceed 12 amperes. Table E.6 shows the corresponding test matrix.  
 
The stator fault test data files also are listed in Table E.6.  During the stator fault test, we monitored the 
resistor value during the test and noticed thermal drift in the resistance value.  Table E.7 shows the 
measured resistor values.  The resistor values appear to drift monotonically with time (increasing 
snapshot number).  For a give load condition, the actual resistance corresponding to each snapshot should 
be consistently decreasing although there is clearly some uncertainty in the actual resistance used in the 
fault simulation. 
 
Table E.6:  Stator fault test snapshot numbers. 

Stator Fault Condition (Resistance, Ohms)  Load 
(W) 33Ω 27 

Ω 
21 
Ω 

15 
Ω 

9 Ω 6 Ω  5 Ω  4 Ω  3 Ω  2 Ω  1 Ω  .8 Ω 

0 140, 
141 

150, 
151 

160, 
161 

170, 
171 

180, 
181 

190, 
191 

200, 
201 

210, 
211 

220, 
221 

230, 
231 

240, 
241 

250, 
251 

1200 142, 
143 

152, 
153 

162, 
163 

172, 
173 

182, 
183 

192, 
193 

202, 
203 

212, 
213 

222, 
223 

232, 
233 

242, 
243 

252, 
253 

2400 144, 
145 

154, 
155 

164, 
165 

174, 
175 

184, 
185 

194, 
195 

204, 
205 

214, 
215 

224, 
225 

234, 
235 

244, 
245 

254, 
255 

3600 146, 
147 

156, 
157 

166, 
167 

176, 
177 

186, 
187 

196, 
197 

206, 
207 

216, 
217 

226, 
227 

236, 
237 

246, 
247 

256, 
257 

0 148, 
149 

158, 
159 

168, 
169 

178, 
179 

188, 
189 

198, 
199 

208, 
209 

218, 
219 

228, 
229 

238, 
239 

248, 
249 

258, 
259 

 
Table E.7:  Stator fault resistor values. 

Stator Fault Condition (Resistance, Ohms)  Load 
(W) 33Ω 27 

Ω 
21 
Ω 

15 
Ω 

9 Ω 6 Ω  5 Ω  4 Ω  3 Ω  2 Ω  1 Ω  .8 Ω 

0 33 27 21 15 9 6.01 4.98 4.01 3.02 2.00
3 

1.0 .79 

1200 33 27 21 15 9 6.14 5.28 4.19 3.27 2.37 1.41 1.43 

2400 33 27 21 15 9 6.32 5.57 4.55 3.63 2.77 1.80 1.96 

3600 33 27 21 15 9 3.40 5.68 4.73 3.81 3.00 2.21 2.30 

0 33 27 21 15 9 6.48 5.72 4.91 4.01 3.19 2.47 2.51 
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Appendix F: Intellectual Property for the ORNL Nonlinear Technology 
 
1) L.M. Hively, “Methods for Improved Forewarning of Critical Events Across Multiple Data Channels,” 

Patent pending (ORNL ERID# 1300) submitted to US Patent Office (22 September 2003). 
 
2) L.M. Hively, P.C. Gailey, V.A. Protopopescu, “Condition assessment of nonlinear processes,” U.S. 

Patent #6,484,132 (19 Nov 2002). 
 
3) D.E. Welch, L.M. Hively, and R.F. Holdaway, “Nonlinear Prediction of Fatigue Failure,” US Patent 

#6,460,012  (1 Oct 2002). 
 
4) L.M. Hively, “Methods for Consistent Forewarning of Critical Events Across Multiple Data 

Channels,” Patent pending (ORNL ERID#0885) submitted to US Patent Office (12 July 2002). 
 
5) L.M. Hively, N.E. Clapp, C.S. Daw, W.F. Lawkins, “Epileptic Seizure Prediction by Nonlinear 

Methods,” U.S. Patent #5,857,978 (12 January 1999). 
 
6) L.M. Hively and E.G. Ng, “Integrated Method for Chaotic Time Series Analysis,” U.S. Patent  

#5,815,413 (29 September 1998). 
 
7) L.M. Hively, N.E. Clapp, C.S. Daw, W.F. Lawkins, “Apparatus and Method for Epileptic Seizure 

Detection using Nonlinear Techniques,” U.S. Patent #5,743,860  (28 April 1998). 
  
8) N.E. Clapp, L.M. Hively, “Method and Apparatus for Extraction of Low-Frequency Artifacts from 

Brain Waves for Alertness Detection,” US Patent #5,626,145 (6 May 1997). 
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Appendix G: Publications on Machine Failure Forewarning under this Project 
 
L.M. Hively, V.A. Protopopescu, and M. Maghraoui “NERI2000-109 Project Review,” invited 
presentation to DOE/NE-20 at ORNL (25 July 2001). 
 
L. M. Hively, V. A. Protopopescu, M. Maghraoui, and J. W. Spencer, "Annual Report for NERI Proposal 
#2000-0109 on Forewarning of Failure in Critical Equipment at Next-Generation Nuclear Power Plants," 
ORNL/TM-2001/195 (November 2001). 
 
L. M. Hively, V. A. Protopopescu, “NERI2000-109 Project Review,” invited presentation of FY02 
project at US Department of Energy, Germantown Headquarters to NE-20 staff (16 Oct 2002). 
 
L. M. Hively, “Forewarning of Failure in Critical Equipment at Next-Generation Nuclear Power Plants,” 
FY02 annual summary of NERI2000-109 project to DOE/NE20 (22 Oct 2002). 
 
L. M. Hively and V.A. Protopopescu, "Forewarning of Failure in Critical Equipment at Next Generation 
NPP," Annual Report for NERI2000-109 project (February 2003) ORNL/TM-2002/183 (Oak Ridge 
National Laboratory). 
 
V. Protopopescu, J. Barhen, Y. Braiman, and L. M. Hively, "Predictability and Control Issues in Complex 
Dynamical Systems," presentation to DOE/NSF/SIAM Workshop on Predictability of Complex 
Phenomena, Santa Fe, 16-18 December 2002. 
 
L.M. Hively, "Forewarning of Failures in Critical Equipment at Next Generation Nuclear Power Plants," 
nvited presentation to DOE/NE-20 and peer reviews at Rockville, MD (20 May 2003). i

 
V.A. Protopopescu and L. M. Hively, “Forewarning of Machine Failure via Nonlinear Analysis,” Proc. 

NS (June 2003). A
 

. Haywood, “Graphical User Interface for Nonlinear-Condition Assessment,” draft of ORNL/TM (2003). T
 
L.M. Hively and V.A. Protopopescu, “Machine Failure Forewarning via Phase-Space Dissimilarity 

easures,” submitted to Chaos (2003). M
 
L.M. Hively, V.A. Protopopescu, K.M. Reichard, and, K. Maynard, “Failure Forewarning in NPP 
Equipment – NERI2000-109 Final Project Report,” ORNL/TM-2003/222 (Oak Ridge National 
Laboratory) 2003 (this final report as a formal document). 
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Appendix H: Recent Publications on Forewarning of Structural Failures and Biomedical Events 
 
D.E. Welch, L.M. Hively, R.F. Holdaway, “Nonlinear Crack Growth Monitoring,” Proc. 2000 ASM 
Materials Solutions Conference and Exposition (11 October 2000) St. Louis, Missouri. 
 
D.E. Welch, L.M. Hively, R.F. Holdaway, “Nonlinear Crack Growth Monitoring,” Proc. Int’l Mech. 
Engr. Congress and Exposition (5-10 November 2000) Orlando, Florida. 
 
L..M. Hively, N.E. Clapp, V.A. Protopopescu, J. Joseph, C.E. Merican, T. Lucht, “Epileptic Seizure 
Forewarning by Nonlinear Techniques,” ORNL/TM-2000/333 (November 2000). 
 
L.M. Hively, V.A. Protopopescu, P.C. Gailey, “Timely Detection of Dynamical Change in Scalp EEG 
Signals,” Chaos 10 (December 2000) 864-875. 
 
D.E. Welch, L.M. Hively, R.F. Holdaway, “Nonlinear Crack Growth Monitoring,” Proc. 33rd National 
Symp. On Fracture and Fatigue (June 2001) Moran, Wyoming. 
 
L.M. Hively, N.E. Clapp, V.A. Protopopescu, “Forecasting Epileptic Seizures,” ORNL Review 33, No. 2 
(2000) 21. 
 
V. A. Protopopescu, L. M. Hively, P. C. Gailey “Epileptic event forewarning from scalp EEG,” invited 
review paper in J. Clin. Neurophysiol. 18 (May 2001) 223-245. 
 
L. M. Hively, V. A. Protopopescu, J. Joseph, "CRADA Final Report for CRADA Number ORNL99-0559 

 Epileptic Seizure Forewarning by Nonlinear Techniques," C/ORNL99-0559 (January 2002). –
 
L. M. Hively, “Forewarning of Medical Events,” Invited Presentation to ORNL/OTT Conference on 
Overcoming Barriers Facing Persons with Disabilities Through the Applications of Technologies, Roane 

tate Community College (16 July 2002).  S
 
L.M. Hively, “Nonlinear Analysis of Physiological Data for Event Forewarning,” invited presentation to 

eekly Biomedical Engineering seminar at University of Kentucky, Louisville, KY (16 Sept 2002). w
 
L. M. Hively, V.A. Protopopescu, N.B. Munro, “Prediction of Sepsis Onset in Trauma Victim

dvanced Nonlinear Analysis,” FY02 Progress report to ORNL LDRD Manager (03 Oct 2002). 
s Using 

ata,” 
ne page abstract to DOE Office of Medical Science for 2003 summary booklet (1/30/03). 

” 
resentation and Proc. ANS Conf. on Nucl. Math. Computational Sci. (Gatlinburg, Tn) 6-11 April 2003. 

g in Analysis of 
iomedical Data,” Invited Presentation to Cray Biology Workshop at ORNL (5/9/03). 

Forewarning of Epileptic Events from Scalp 
EG,” IEEE Trans. Biomed. Engr. 50

A
 
L. M. Hively, “Forewarning of Biomedical Events via Nonlinear Analysis of Physiologic D
o
 
L. M. Hively and V.A. Protopopescu, “Detection of Changing Dynamics in Physiological Time Series,
p
 
L. M. Hively and V. A. Protopopescu, “Need for High Performance Computin
B
 
L. M. Hively and V. A. Protopopescu, “Channel-Consistent 
E  (May 2002) 584-593. 

gical Time 
Series for Biomedical Event Forewarning,” Biomed. Engr. Soc. Mtg. (10/3/03) Nashville, TN. 

 
L. M. Hively, V. A. Protopopescu, N. B. Munro “Detection of Changing Dynamics in Physiolo
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APPENDIX I: Development of Graphical User Interface 
 

INTRODUCTION 
 
ORNL has developed and patented a model-independent methodology to assess condition change in 
complex systems from noisy, process-indicative data of limited precision and modest length. Condition 
change is typically indicative of impending machine failure [I.1] or biomedical event (e.g., epileptic 
seizure or breathing difficulty). Practical use of this technology for machine and biomedical applications 
will require a user-friendly Graphical User Interface (GUI). This report describes the development of the 
first essential GUI function, namely graphical presentation of the analysis results. Subsequent sections 
explain the functional requirements, software design, implementation, testing, and demonstration of the 
GUI for visualization of representative results. 
 
FUNCTIONAL REQUIREMENTS 
 
The user-friendly GUI features include clear presentation of the results and an intuitively obvious use that 
requires little or no user training. The GUI should be implementable on many different computer 
platforms that run various operating systems. Remote access should also be possible via Internet.  
 
SOFTWARE DESIGN 
 
The use of the commercial MATLABTM software for construction of the GUI satisfies all of the 
functionality requirements for creating plots, images, surfaces, and volumetric representations. MATLAB 
implements GUIs as windows containing various control objects, such as pushbuttons, pull down menus, 
and toggle buttons, which can be used for implementation of functions such as saving a plot. Each object 
must be programmed separately to perform the intended action. These tasks are simplified by GUIDE, 
MATLAB's Graphical User Interface Development Environment. The specific design involves buttons to 
select the type of plot, a menu to choose the appropriate data file for plotting, and buttons for saving the 
plot, and termination of the GUI. 
 
MPLEMENTATION I

 
GUI implementation involves two basic tasks: laying out the options on the GUI control panel and 
programming the function(s) of each GUI component. GUIDE includes a set of layout tools. GUIDE also 
generates a procedure file (called an “M-file” or MATLAB file) that contains code to handle the 
initialization and launching of the GUI. This M-file provides a framework for the implementation of the 
callbacks, which are the active GUI functions. GUIDE allows interactive layout of the components, and 
generates two files that save and launch the GUI. The first is a FIG-file that contains a complete 
description of the GUI figure and all of its attributes, as well as the values of all object properties. The 
econd is an M-file that contains the (sub)functions that launch and control the GUI and the callbacks.  s

 
After launching the GUI, five push buttons appear on the right-hand side of the top-level menu (Fig. I.1), 
corresponding to plots for the five different kinds of data. The user clicks on one of the push buttons for 
the corresponding data plot. A file selection box then appears. The user next clicks on the appropriate file 
for plotting from this file selection box. The GUI extracts the numerical data from that file and displays 
the resulting plot on the GUI screen. Two additional choices appear on the GUI menu under the 
“Options” button. One is for printing or saving the plot to a file in a chosen form

TM TM
at. The user then can 

port the file into MS-Word  or PowerPoint . The other button closes the GUI. 

 

im
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RESULTS AND TESTING 
 
This section shows examples of the data plots for five different types of data. Figure I.1 shows the 
completed top level GUI screen. Figure I.1 also shows the dialog box that appears for selection of a file 
for plotting.   The top button on the far right of the GUI screen with the label, “3_Chan_Raw” plots the 
data as shown in Fig. I.2. The second button, “1_Chan_Raw”, plots the data as shown in Fig. I.3. The 
third button, “Trad_NLM”, plots the data as shown in Fig. I.4. The fourth button, “PSDM”, plots the data 
as shown in Fig. I.5. The fifth button, “Data Quality”, plots the data as shown in Fig. I.6. 
 
 
 

 
 
 
 
Figure I.1: Display of the GUI when a plot push-button is clicked.  
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Figure I.2 shows raw tri-axial accelerometer data in three orthogonal directions [1], corresponding to each 
of the three columns. The top row shows roughly one second of data for each of the three channels at a 
sample rate of 52 kHz. The second row shows more detail in the same data over 200 milliseconds for each 
channel. The third row shows still more detail for each of the three channels over roughly 40 
milliseconds. The bottom plot in Fig. I.2 shows the most detail in complex, nonlinear waveforms for each 
of the three channels over roughly 8 milliseconds. 
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Figure I.2: Plot of tri-axial accelerometer data (columns) over successively shorter time intervals (row 
from top to bottom). 
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Figure I.3 shows the complex, nonlinear features in vibration power over the same successively shorter 
time intervals as in Fig. I.2. This single-channel of power data was obtained from the tri-axial 
accelerometer data via the following combination of calculus and elementary mechanics [1]. Acceleration, 
a, is a three dimensional vector that can be integrated once in time to give velocity, v. Mass, m,  
multiplied by acceleration equals force vector, F = ma. The vector dot product of force and velocity is 
scalar vibration power, P = F • v. Vibration power captures the dynamical features of all three 
acceleration directions in a single scalar signal versus time. 
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Figure I.3: Plot of single-channel raw data over successive shorter timescales. 
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Figure I.4 shows a plot of three traditional nonlinear measures versus time [1]. The top subplot is the 
correlation dimension, D, which is a measure of the data complexity. D is a decimal number, which, when 
rounded up to the next higher integer, indicates the number of simultaneous ordinary differential 
equations required to model the process dynamics adequately. The middle plot is the Kolmogorov 
entropy, K, which measures the rate of information lost per unit time (in BITS/s), or the degree of 
predictability. The bottom plot shows the value of the first minimum in the mutual information function 
(MIF), which is a nonlinear version of the (linear) autocorrelation function. MIF measures the average 
information (in bits) that can be inferred from one measurement about a second measurement as a 
function of the time delay between the observations. The first minimum in MIF, M1, is a measure of the 
nonlinear decorrelation time between the two signals. 
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Figure I.4: Plot of three traditional nonlinear measures: correlation dimension (top), Kolmogorov entropy 
(middle), and first minimum in the mutual information function (bottom). 
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Figure I.5 shows measures of condition change. The time-serial vibration power data in Fig. I.3 were 
converted to a discrete distribution function (DF) that captures the essential features of the underlying 
dynamics. Condition change assessment compares test case DFs to a base case (nominal state) DF via 
novel measures of dissimilarity. Forewarning is indicated by several sequential occurrences of the 
dissimilarity measures above a threshold. While traditional nonlinear measures compare averaged (global) 
quantities, the enhanced discrimination power of these measures is achieved by focusing on the absolute 
difference between the two DFs. 
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Figure I.5: Measures of condition change versus time: (subplots a-d) four phase-space measures of 
dissimilarity between the DFs for baseline dynamics and subsequent test states; (e) composite measure, 
namely the sum of the measures from subplots (a)-(d); and (f) statistical criteria for forewarning of failure, 
based on a straight-fit to the data in subplot (e). 
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Figure I.6 illustrates results that assure adequate data quality for the above analyses. This analysis first 
sorts the time-serial data into ascending order, from the smallest to largest value. This sorted  sequence 
then is converted into a histogram of occurrence frequency versus each unique signal value in the raw 
data. The left subplot shows the result, indicating a problem with singlet occurrences of signal values for 
both the largest and smallest values. The first difference of these sorted values is next obtained, sorted, 
and plotted as a histogram, as before. The result is the right subplot, which shows the expected result of 
many small increments between successively larger signal values and few large differences. 
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Figure I.6: Plot of Data Quality Measures 
 
 
TESTING/RESULTS 
 
Each data file was tested individually to assure that the GUI was functioning properly. When the user 
selects a particular type of visualization and the corresponding data file, the GUI generates the appropriate 
plot. The user has the choice of printing the plot or saving it to desired file.  
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