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ABSTRACT

We analyzed cutting dynamics of stainless steel in the non-chatter and chatter regimes, toward
the ultimate objective of chatter control. We used linear methods (principal components analysis,
Fourier power spectra) and nonlinear techniques (mutual information function, correlation
dimension and entropy spectra, Poincare sections, return maps). We sampled three accelerations
(A) at various spindle speeds: x in the cutting direction (Ax),y along the depth of cut (Ay),and z
in the feed direction (Az).The correlation dimension is typically <4 on the embedded attractor
above the noise floor. Non-chatter dynamics exist at low spindle speed, with low periodicity, low
acceleration amplitude, and strong chaotic features. Chatter occurs at high spindle speed, with
high acceleration amplitude, weak chaotic features, and strong period-l motion. Period-l and -2
dynamics dominate in the x and z directions, respectively.Poincare sections for Ay=0 are
sensitive to the non-chatter-to-chatter transition, which involves a change fTomchaotic behavior
to period-l motion along the tool axis. Return maps and Poincare sections show the non-chatter-
to-chatter transition before detection by an experienced operator, and may serve as predicators of
this transition. Our work also suggests some likelyalternatives for chatter control.
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1. INTRODUCTION

Advanced machining requires faster material removal rates, which usually results in poorer
part quality, due to nonlinear tool-part dynamics.For example, tool chatter during lathe cutting
results in nicks, gouges, and roughened surface finish. Such features are unacceptable for
precision components. This work characterizes the nonlinear dynamics during lathe cutting in
non-chatter and chatter regimes. The ultimate objective is control of chatter dynamics for faster
material removal with the same (or better) part quality, which we plan to address in later work.

The theory of nonlinear dynamics provides a basis for understanding many complex physical
and engineering systems. In this work, we apply nonlinear/chaos analysis to the experimental data
for stainless steel machining on a lathe. Some technical literature exists on this problem [1-10].
Berger et al. [1] analyzed experimental tool-part accelerations in the pre- and mild-chatter
regimes, and found the information dimensionsof2.38 and 2.51, respectively. Grabec [2-4]
modeled cutting by two differential equations for the dynamics in the cutting direction (x) and
depth of cut (y), and found chaotic features.

Iemielniak and Widota [5] modeled the cutting by a single differential equation for the depth of
cut (y) with random disturbances due to the unpredictable nature of chip removal, and applied
conventional stability analysis to the resulting chatter dynamics.Lin and Weng [6] also modeled
the cutting with one differential equation and studied the linear and nonlinear stabilityproperties
of the dynamics. They found that linear theory predicts a stabilizingeffect for an increase in feed
rate and in the cutting tool stiffness. Their nonlinear stabilityanalysis showed that chatter
amplitude increases with an increase in cutting width or a decrease in feed rate.

Qu et al. [7] apply several nonlinear analysis tools to vibration data from rotating machinery
(turbo-generator and compressor), demonstrating the usefulness of these tools in diagnosing
nonlinear dynamics. Wu and Liu [8] developed a two-dimensional model for the cutting direction
(x) and the depth of cut (y), including fluctuations in the mean fiction coefficient due to chip
removal. Wu and Liu [9] found that their model [8] is consistent with the experimental chatter
dynamics, involving velocity dependency, vibration mode coupling, and chip generation.
Bukkapatnam et al. [10] recently analyzed data from lathe cutting and found evidence for low
dimensional choas. We found no publications with detailed nonlinear/chaos analysis of cutting
data, or attempts to stop chatter via chaos control methods.

A practical issue for this analysis is robustness to noise and finite data precision, because
previous work has found that noisy data are exceedingly difficult to analyze. This concern is an
important one, since many nonlinear analysis tools handle only model data, which has no noise, is
very precise (to 8 -16 digits), and involves much data (105-106points). Thus, we use tools that
can cope with the noise (10 -50% of the signal amplitude) and finite data precision (7 - 12 bits) in
modest-length datasets (104 - 105points), typical of experimental data.

This paper is organized as follows. Section 2 explains the data acquisition and linear analysis.
Section 3 describes the features of specific nonlinear tools and their application to machining data.
Section 4 provides "adiscussion of our results. Section 5 presents the conclusions of our work.
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2. DATA ACQUISmON AND LINEAR ANALYSIS

We obtained our data during machiningof a 316 stainless steel cylinderon a lathe (Monarch
Mark Century 2000) in Building 9737 at the Y-12 Plant in Oak Ridge, Tennessee. The analog-to-
digital converter recorded the data (in arbitrary units) with 12-bit precision (i.e., values between
-2048 and +2047). Each dataset began with one line of header information, describing the
machining conditions and samplingrate. The remainder of the dataset had time serial records (one
line per record), with the following data at equal time intervals:

three orthogonal forces (F) in (x, y, z): Fx,Fy,Fz.
three orthogonal accelerations (A) in (x, y, z): Ax,Ay,Az.
three currents (11,h, 13.)from the three-phase power input to the lathe spindle motor.

The accelerometer calibration showed :i:2%accuracy at ~7 kilohertz, which rose to :i:5%
accuracy for ~10 kilohertz. Accelerometer calibrationabove 10 kilohertz was unavailable.No
calibration informationwas availablefor the current and force sensors. Figure 2.1 shows the
(x, y, z) coordinate system for the tool-part configuration.

We obtained two datasets for an initialevaluation (the data acquisition setup, the choice of
sampling frequency, sensor response with frequency, and data variability).The machining
conditions for the non-chatter dataset were at a spindle speed of 62 revolutions per minute
(RPM), 0.012-inch feed rate per revolution, and O.OI-inchdepth of cut. The machining conditions
for the chatter dataset were 133 RPM, 0.005-inch feed rate per revolution, and 0.02-inch depth of
cut. Each dataset spanned 2 seconds at a samplingrate of 15 kilohertz, corresponding to 30,000
samples for each of the nine data channels.

Figures 2.2-2.4 show typical time-serial plots of force, acceleration, and motor current for the
non-chatter regime. Figure 2.4 displaysvery clear steps in current amplitude, corresponding to
very limited precision in this signal. The motor current value varied from 263 to 294 (a range of
31 units), corresponding to slightly less than 5 bits of precision in variability.The other two motor
current channels had a variation over 20 and 32 units, respectively. This limited precision arose
from the data acquisition setup, which could not be improved under our work scope. Figure 2.5
shows the Fourier power spectra for each of the nine data channels. The motor current spectra
have poor resolution, due to the limited data precision. The force spectra had a noise floor above
2 kilohertz, indicating that the force sensors had'a high frequency cutoff that could not be
changed under our work scope. Acceleration spectra show much structure over the full frequency
range (0 -5 kilohertz), without a noise floor.

Figures 2.6-2.8 show typical time serial plots offorce, acceleration, and motor current for the
chatter regime. The precision limitation again appears in the motor current (Fig. 2.8). A frequency
cutoff above 2000 Hertz also occurs in the force data (not shown). Even with these data
limitations, clear correlations exist between the force and current data. We concluded the
following from these observations: (a) further analysisof motor currents was inappropriate, due
to limited data precision; (b) further analysis of forces was inappropriate, due to the frequency
cutoffby the sensor; (c) analysis of accelerations requires a higher sampling rate to see the full
dynamics, since no noise floor appears for a samplingrate of 15 kilohertz.
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Fig. 2.1. Coordinate system (x, y, z) for:the tool-part configuration.
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Fig. 2.3. Typical time-serial plots of the z-component of acceleration in the non-chatter
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The data acquisition digitization capacity was limited to ~150,000 samples/second. Based on
the above results, we eliminated all channels of the force and motor current data, and sampled the
three acceleration channels at 50 kilohertz, consistent with the digitization constraint. We
obtained five datasets at fixed machiningparameters (0.012-inch feed rate per revolution, 0.010-
inch depth of cut), while varying the spindle speed (75, 100, 125, and 150 RPM). Figures 2.9-
2.11 show typical time-serial plots of Ax(Fig. 2.9), Ay(Fig. 2.10), and Az(Fig. 2.11).

Several features in the three components of acceleration are noteworthy in these figures.
- The signals are least periodic and the most complex at the lowest spindle speed (75 RPM).
- The complexity decreases and the periodicity increases as the spindle speed increases.
- The signals are most periodic and least complex at the highest spindle speed (150 RPM).
These figures also display distinctions among acceleration components. The dominant frequency
in Az(feed direction) is twice that of Ax(cutting direction) and Ay(tool axis), implyingthat the
effective stiflhess in the feed direction is much different from the other two directions. Low (high)

Ayvalues accompany non-chatter (chatter) dynamics,but Axand Azshow no such trends. Thus,
all three spatial directions are important, implyingthat a chatter model needs to account for
dynamics in all three spatial dimensions.

Figures 2.12-2.14 show Fourier power spectra of the three acceleration components, for the
four spindle speeds. The spectra for the x- and y-accelerations are very similar,with close
correspondence between the amplitude and position of the peaks and valleys. The principal peak
in frequency (fp)for Axand Ayoccurs at 1500-1600 Hertz, but fpfor Azoccurs at 3000-3100
Hertz. Subsequent analysis elucidates this difference.

The Fourier power spectra at the lowest spindle speed (75 RPM) show a series of central
peaks with prominent peaks on both sides of the central peak. The differencebetween the side-
band frequencies and the central frequency corresponds to the lowest frequency peak at 200-250
Hertz. We conjecture that this low-frequency peak arises because the lathe controller had
difficulty in maintaining a constant spindle speed below 100 RPM. The amplitude of the low-
frequency peak (due to the lathe controller) decreases at higher spindle speed, and is insignificant
(more than three orders of magnitude below the principal peak) at >100 RPM.

The side-band peaks also are insignificantat the higher spindle speeds, leaving a very clear
series of peaks at the principal frequency and multiples (and half-multiples) thereof No clear
peaks appear in the spectra at 75 RPM above 13 kilohertz. However, clear spectral peaks occur
over the entire frequency range at higher spindle speeds.

The lathe operator clearly heard chatter at 150 RPM (when the peaks were cleanest), and our
results (discussed below) strongly suggest lower chatter levels at 125 RPM (when the peaks were
almost as clean). We hypothesize that chatter occurs when a single frequency (with multiples and
half-multiples) is dominant (high periodicity and low complexity) at high spindle speed.
Conversely, chatter does not occur when many disparate frequencies (high complexity and low
periodicity) are present at low spindle speed. If our hypothesis is correct, then chaos tends to
suppress chatter, whereas strong periodicity tends to enhance it. .
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3. NONLINEAR ANALYSIS

We used a variety of nonlinear analysesthat were valuable for other experimental data [11].
These techniques included Kolmogorov entropy, mutual information function, maximum
likelihood correlation dimension,principle components analysis,Poincare sections, and time
return maps. This section discusses the nonlinear methods and their interpretation.

The time-serial values (Xi) of machiningdata are a sequence of w points. The average (~) is:
w

~ = (lIw) ~. Xi
i=l

(3.1)

The absolute average deviation (AAD) is a robust indicator of variability [12] and is defined as:
w

a = (lIw) ~ IXi -~I
i=l

(3.2)

The mutual information function (MIF) is a nonlinear form of the auto-correlation and cross-
correlation functions. Shannon and Weaver [13] developed the MIF, which Fraser and Swinney
[14] applied to time series analysis.. The MIF measures the average information (in bits) that is
inferred ftom one measurement about a second measurement, and is a function of the time delay
between the measurements. Univariate MIF compares acceleration data ftom the same channel at
different times. Bivariate MIF compares data ftom two acceleration channels at different times.

The correlation dimension (D) measures complexityas a non-integer dimensionality,and was
formulated by Takens [15] with later modificationsfor noise [12]. Conceptually, D is based on the
number (N) of random-point-pairs (as measure of volume) with inter-point distance (L), scaling
as N ccLD.In practice, D is computed ftom the cumulative ftaction (correlation integral) of
random-point-pairs with an inter-point distance (Lex>norm) less than or equal to some scale length
(L). We report D as a function of scale length (correlation dimension spectrum).

The Kolmogorov entropy measures the rate of information loss per unit time. A positive, finite
entropy usually gives a clear demonstration of chaos. A very large, positive entropy indicates a
stochastic (totally unpredictable) phenomenon. Entropy is found ftom the average time for two
points on an attractor to go from an initial separation (e.g., L < a), to become separated by more
than a specific distance (e.g., L ~ a). We use the maximum-likelihoodentropy from the method by
Schouten, Takens, and van den Bleek [16], also called the order-2 Kolmogorov entropy which
hereafter we call simply"entropy." We report K as a function of scale length (entropy spectrum).

The entropy (K) and correlation dimension (D) usually are reported in the limit of zero scale
length. However, experimental data have noise and finite measurement precision. Consequently,
we report K and D spectra for a range of scale lengths, with small scale length corresponding to
noise (typically for L::;;a), and larger scale length (typicallyfor L ~ Sa) spanning more global
dynamics. These spectra do not capture the full dynamic complexity, i.e., their values are smaller
than expected for the zero-seale-length limit.Rather, we interpret K and D spectra as nonlinear
measures of the finite-scale dynamics,because the zero-seale-length limit is unattainable due to
noise and finite measurement precision.
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Principal component analysisreconstructs the nonlinear dynamics from experimental data.
Abarbanel et al. [17] and Grassberger et aI. [18] review this and related techniques. A sequence of
data (Xi)is measured at equal intervals (-r), beginning at some initial time (to),Xi= x(to+ iT).
Conversion of this data to a system of differentialequations for the dynamics requires that the
derivatives be approximated by finite differences of the data values [dx/dt = (Xi+l -Xi)!l:,d2x/dt2=
(Xi+2 -2Xi+l -xi)1L2,etc.]. These and higher derivatives add to the information that already resides
in the Ximeasurements, as multiples of other measurements at times that are multiples of the
observation interval (l:). Thus, a more direct method [19] relies on the use oflagged variables,
Xn+i1\= x(to + (n+iA)l:), with A as an integer lag that is determined from the data. In particular, this
method uses a collection of time lags to create a vector of data in d dimensions:

y(n) = [xn, Xn+1\, Xn+21\, ... , Xn+{d-l)1\] (3.3)

Takens [20] found that faithful reconstruction of the system dynamics requires the embedding
dimension (d) to be at least one plus twice the number of degrees of freedom (DOF). We measure
the DOF for a given scale length as the correlation dimension(D), yieldingan embedding
dimension of d ~2D + 1. If the lag value is too small, then adjacent coordinates, Xn+j1\and Xn+(j+l)1\,
will be so close together in numericalvalue that they cannot be distinguished. If the lag value is
too large, then these same adjacent coordinates are essentiallyindependent due to the inherent
unpredictability of chaotic systems after a long time. An optimal time length [14] should span
enough data to go from the first maximumin the univariate MIF (maximumnonlinear correlation
that always occurs at zero lag) to the first minimumin the MIF (minimumnonlinear correlation at
M1 as measured in timesteps). The vector in Eq. 3.3 has a total of(d-l) A timesteps, so the lag
valueis obtainedfromM1=(d-l) A ~ (2D+ 1-1) A=2DA, or A ~ M1/2D.Broomhead and
King [21] obtained the eigenvalues (Oi)of the covariance matrix of y(n), which are all positive
and can be ordered monotonically from largest to smallest. The larger eigenvalues correspond to
the true system dynamics in dTdimensions and typically constitute ~99% of the sum over all the
eigenvalues. Other eigenvalues arise from noise in dNdimensions with d = dT + dN, corresponding
to a noise floor in Oi versus i. The eigenvectors are orthogonal and are used to project out the
independent dynamic components from the data, e.g., zk(i)as the k-th dynamic component at the
i-th timestep. The "principal components" match the larger eigenvalues. The system dynamics are
visualized in two- or three-dimensions by connecting the sequence of points (zl(i), z2(i» for the

. firsttwo principalcomponents,or by connectingthe triplet(zl(i),z2(i),z3(i»for the firstthree
principal components. When the above constraints are satisfied, Takens' embedding theorem [20]
guarantees that the resulting representation faithfullyreconstructs the system dynamics.

The machining data consists of multiple data channels, so the principal component analysis can
be applied to each channel. The dynamics can be reconstructed geometrically by connecting the
time sequence of three orthogonal acceleration values (Ax,Ay,Az). Another visualization
technique involves the intersection of the line that connects the sequence of values (Ax,Ay,Az)at
each time with the plane ~=O, for i = (x, y, or z). This set of two-dimensional points for the
system dynamics passing from ~ <0 to ~ >0 is called a positive-going puncture plot (or Poincare
section). A negative-going Poincare section shows system motion that goes from ~ >0 to ~ <0,
The two Poincare sections are not the same because in one direction the motion is constrained by
contact with the part but in the other direction the motion has no such constraint.
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4. RESULTS AND DISCUSSION

We obtained five datasets for stainless steel machining(0.0 12-inchfeed rate per revolution,
0.010-inch depth of cut), at four spindle speeds (75, 100, 125, and 150 RPM), as summarized in
Table 4.1. Datasets #091802 and #091803 are at the same spindle speed (100 RPM), showing
consistency between different datasets for the same parameters; other nonlinear measures (not
shown) demonstrate the same consistency. The principal peak ftequency (fp)in the Fourier spectra
increases monotonically with spindle speed for all three acceleration channels. The number of
timesteps per cycle (Tc)measures the average cycle period. Tc(Ax)and Tc(Az)decrease slowly
with increasing spindle speed, but Tc(Ay)is non-monotonic. The acceleration amplitude range
(t1~) is the difference between the largest and smallestvalue of~. We note that t1Ayrises
monotonically as the spindle speed increases, with the two largest values corresponding to the
chatter regime. The amplitude range in the other two channels (t1Axand t1Az)is non-monotonic.

Table 4.1 Summary of analysis results

Dataset

Parameter 091801 091802 091803 091804 091805

Spindle speed (RPM) 75 100 100 125 150

fp(Ax)(Hertz) 1514 1526 1538 1563 1575

fp(Ay)(Hertz) 1514 1526 1538 1563 1575

fp(Az)(Hertz) 3027 3064 3064 3113 3149

Tc(Ax)(timestepslcycle) 33.0 32.7 32.6 32.1 31.7

Tc(Ay)(timesteps/cycle) 26.2 27.3 30.7 32.1 31.7

Tc(Az)(timesteps/cycle) 16.5 16.3 16.3 16.0 15.9

t1Ax(arbitrary units) 584 479 433 474 387

t1Ay(arbitrary units) 169 219 178 272 387
t1Az(arbitrary units) 172 154 115 153 178

M1(Ax)(timesteps) 9 8 8 8 7

M1(Ay)(timesteps) 4 5 5 6 5

M1(Az)(timesteps) 5 4 4 4 4

Dmin(Ax) 2.23 1.87 1.67 1.65 1.58

Dmin(Ay) 2.53 1.60 1.45 1.38 1.41

Dmin(Az) 2.43 2.38 2.24 1.87* 1.81*

Dmax(Ax) 2.61 2.59 2.37 2.58 2.95

Dmax(Ay) 3.15 2.45 2.36 1.97 1.58

Dmax(Az) 2.55 2.47 2.26 1.87* 1.81*

K(Ax)(bits/timestep) 0.025 0.015 0.012 0.011 0.0084

K(Ay)(bits/timestep) 0.026 0.0056 0.0052 0.0039 0.0026

K(Az) (bitsltimestep) 0.051 0.032 0.028 0.017 0.013

* Starred values denote that no local minimumor maximumoccurred; see text for discussion.
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Figure 4.1 shows the univariate MIF for the three acceleration components. From Section 3,
the first minimum(Ml) in the MIF measures the time when the signal is least correlated with itself
and is the important feature of these results. Table 4.1 shows M1for each channel, with M1(Ax)
decreasing slightlywith increasing spindle speed, but M1for Ayand Azbeing roughly constant.
The range is 4 ~ M1 (timesteps) ~9, implyingthe chaotic dynamics become unpredictable after
80-180 microseconds. A fully adequate sampling rate would allow M1 ~10 timesteps, so the
present range indicates that our samplingftequency is only marginallyadequate, as constrained by
the existing data acquisition system.

Figure 4.2 shows typical correlation dimension(D) spectra and correlation integral. The error
bars show the 95% confidence limits for each point. D is large for smallvalues of scale length,
corresponding to high complexity (or noise) at short scale length. D decreases to much smaller
values at larger scale length, corresponding to global structure. Between these extremes, a plateau
region usually appears, which we characterize by the local minimum(Dmin)and maximum (Dmax).
Table 4.1 shows Dminand Dmaxfor each acceleration component. The starred (*) values of
acceleration for the z-component in Table 4.1 mean that no local minimumor maximum occurred,
so these values correspond to the flattest part of the plateau. In all but one case, the values ofDmin
and Dmaxdecrease with increasing spindle speed. The exception is Dmax(Ax},which decreases to a
minimum at 100 RPM, then rises with increasing spindle speed (125-150 RPM). Over the full
extent of spindle speeds, the range is 1.38 ~Dmin~ 2.53 and 1.58 ~Dmax~ 3.15. This range
implies that an appropriate set of four simultaneous first-order differential equations can model
the essence of the tool-part dynamics for these spindle speeds.

Figure 4.2 also shows typical entropy (K) spectra. The error bars show the 95% confidence
limit for each point. K is large for smallvalues of scale length, corresponding to a fast rate of
information loss per timestep for noise. K decreases monotonicallywith increasing scale length,
corresponding to progressively less information loss at more global length scales. The K-spectra
for Axand Ayhave two domains. For a ~L ~ (3-4)a, K decreases slowlywith increasing scale
length, corresponding to local structure in the dynamics.For (3-4)a ~L ~ 7a, K decreases much
more rapidly with an essentially linear slope on these log-linear plots (an exponential decrease
with scale length), corresponding to global structure in the dynamics.The K-spectrum for Azhas
a more gradual transition in slope, corresponding to different dynamics in the transition for local-
to-global structure. Since the plateau region in the D-spectra occurs for a scale length of 1.5a ~L
~ 4.25a, we characterize the K-spectra by a typical value at L=2a as shown in Table 4.1. These K-
values decrease with increasing spindle speed for all three acceleration channels. This trend is
consistent with more (less) complexity and chaotic features, and less (more) periodicity at low
(high) spindle speed.

Figure 4.3 illustrates the three-dimensional geometric structure of the machining dynamics by
following the time-serial sequence of points, (Ax,Ay,Az),for many periods. The resulting figure is
called an "attractor," representing the global region to which the dynamics is confined. A totally
random (stochastic) process forms a compact sphere. This figure shows a clear structure in the
attractor, indicative of a deterministic process. At low spindle speed (non-chatter regime), the
attractor is an elongated torus with sharp corners. As the spindle speed increases, the toroidal
attractor becomes a less elongated and more circular.
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Fig. 4.2. Typical results for dataset #091801: (a) D-spectrum for Ay, (b) correlation
integral for AY'(c) K-spectrum for Ay, (d) D-spectrum for Az,(e) correlation integral for Az,
(t) K-spectrum for Az, (g) D-spectrum for Au (h) correlation integral for Ax, and (i) K-
spectrum for AL

23

091601 . ,10

01 /.,...

-1

-28 -2
z

(a)0 ,-,tii "

I j
-3z .... tw 6

>-

-'[

,.
j5 z
z Q

S. -40 S3 0
4 .... -6

§ -5
a:w a:a: 0a:

0 u
u 'Z'..

2

-] I
1

-6

a . -7
a 2 4 6 8 -2 a 2 a 2 4 6 8

101 . , , I 01 , .
,J:I8II1IINI'" -1.0

-2' - -1.58
z
Q

( j

II)

(d) Ii: (e) f -2.0
z.... 6

>-

4[

,. 0
j5 Z II:>-
z Q

§. -2.50 S 0
4 w -6

§a:
8 -3.08 'Z'..

2

-] j
1

-3.5

A' , , , 1 . -4.0
a 2 4 6 8 -2 a 2 a 2 4 6 8

10

01

.
/WNJ

-1

-28
z

(g)

[f

Q

/
,..,

1

f -3
II)
zw 6,.
j5 >-
z

:
.§. -40 S 0....
§a:

a:a: 0 -5!5 u
u '3 -6

-6

0' . . . , -8' . I -7
a 2 4 6 8 -2 a 2 0 2 4 6 8

SCALESIZE (MULl1PLESOF ND) LN(SCALESIZE) SCALESIZE (MULTIPLESOF ND)



24

"00 "00

(a) (b)

"00

'>00
(c) (d)

Fig. 4.3. Attractor plots in (Ax,Ay,Ax)space for spindle speeds of (a) 75 RPM, (b) 100
RPM, (c) 125 RPM, and (d) 150 RPM.
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Figure 4.4 shows the three-dimensional attractors from principle components analysis. The top
row shows plots for dataset #091801 (75 RPM), with #091802 (100 RPM) as the second row
from the top, #091803 (100 RPM) as the middle row, #091803 (125 RPM) as the fourth row, and
#091805 (150 RPM) as the bottom row. Each column shows one acceleration, (Ay,Az,Ax)from
left to right, respectively. Complex features appear at 75 RPM, with the Azattractor as a double
loop, that is very different ftom the structure of the other two accelerations. As the spindle speed
rises, this double loop in the Azattractor becomes a cylinder (moving down the center column).
The dynamics in Axand Ayare also less complex at higher speed.

Figures 4.5-4.6 show positive- and negative-going Poincare sections for Ax= 0, respectively.
Each Poincare section is a single cluster of points. The positive-going section at 75 RPM (Fig.
4.5a) is a dense elongated cluster about a line with negative slope. The clusters at 100 RPM (Figs.
4.5b-c) are slightlyelongated and have no clear orientation. The clusters at 125-150 RPM (Figs
4.5d-e) are more elongated with no Ayvalues close to zero (which the other subplot do have) and
with a nearly vertical orientation. The negative-going sections (Fig. 4.6) form clusters about a line
with negative slope, and become less elongated as the spindle speed rises. The clusters at 125-150
RPM (Fig. 4.6d-e) have a nearly vertical orientation.

Figure 4.7 shows positive-going Poincare sections for Az=O.Each Poincare section has two
compact clusters, indicating double loops in the dynamics (at twice the principal frequency of Ax
and Ay).The clusters change shape and orientation as the spindle speed increases. The upper
clusters (Ax> 0) span Ay=0 for non-chatter cutting (subplots-a, -b, -c), but during chatter, upper
clusters occur only for Ay> 0 (subplots-d and -e). The lower cluster (Ax< 0) is very elongated at
75 RPM (subplot-a) and oriented along a line with nearly vertical (negative) slope. The lower
cluster is less elongated at 100 RPM and oriented along a line with a nearly vertical (positive)
slope. The lower clusters are slightlyelongated at 125-150 RPM. The line between the centroids
of the two clusters has a positive slope that decreases as the spindle speed rises.

Figure 4.8 shows negative-going Poincare sections for Az= O.These sections also display
pairs of compact clusters. The upper cluster occurs in the quadrant with Ax> 0 and Ay< 0; the
lower cluster appears in the quadrant with Ax< 0 and Ay> O.The most significant difference
among these sections appears at 150 RPM (subplot-e) which shows the upper cluster with larger-
magnitude Ay-valuesand more elongation than the other clusters.

Figure 4.9 shows positive-going Poincare sections for Ay= O.The sectionsat lowspeed
(subplots-a and -b) show two clusters of points (one for Ax> 0 and the other for Ax< 0),
indicating double loops in dynamics that are not apparent ftom the attractors in Figs. 4.3-4.4.
Only a single, compact cluster occurs for Ax> 0 at high spindle speeds (subplots-d and -e). The
elongated cluster for dataset #091803 (subplot-c) has a few scattered points in the right portion of
the plot, where the second cluster appeared in subplots-a and -b. We note that at the completion
of dataset #091802, the tool ran off the end of the cylindricalworkpiece. Dataset #091803 began
at the other end of the cylindricalpart at a diameter that was smaller by twice the cutting depth
(2 x 0.01 inch), corresponding to a diameter change -1 %. This unintentional percent-level change
in machining parameters allowed us to record what seems to be a clear transition ftom the non-
chatter to the chatter regime.
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Figure 4.10 shows negative-going Poincare sections for Ay= O.The lower-speed (non-chatter)
sections show two clusters (one for Ax> 0 and the other for Ax< 0), as before. The higher-speed
(chatter) sections have a single cluster for Ax> 0; also as previously observed. The structure of
positive- and negative-going Ay= 0 Poincare sections is sensitiveto the transition ftom non-
chatter to chatter dynamics, and may serve as an easilycomputable indicator of chatter.

We note in Table 4.1 that the entropy of Aydecreases abruptly (0.026 to 0.0056) ftom 75 to
100 RPM. The time scale changes only slightly,as measured by the number of timesteps per cycle
(Tc)and the principal ftequency (fp).Thus, the entropy change is due to changing Aydynamics.
The left column of Figure 4.4 shows a change between 75 RPM (top plot) and 100 RPM (second
plot ftom the top). Namely, the inverted-v deviations ftom the basic heart shape (top plot) are
missing ftom the second plot. The lack of deviations at 100 RPM may be a chatter precursor.

The return time, TO), is the linearly-interpolatedinterval (in timesteps) between the j-th and
j+ 1 positive- (or negative-) going zero crossing. A plot of T(i+L) versus T(i) is called a "return
map" with lag = L. Figures 4.11-4.12 show positive- and negative-going return maps (lag = 1) for
Ax,respectively. Higher lags do not change the structure of these plots (not shown). The points
cluster along the diagonal, T(i+l) =T(i). The shape and orientation of the cluster changes
somewhat with spindle speed, but the basic structure impliesthat Axundergoes period-l motion.

Figures 4.13-4.14 show positive- and negative-going time return maps (lag =2) for Az,
respectively. The points predominantly form compact cluster(s) about the diagonal, T(i+2) = T(i).
This result is consistent with earlier analysis that Azdynamics have a dominant ftequency that is
twice that of Axand Ay.This result impliesthat Azmotion is mostly period-2 over this range of
spindle speeds, because the clusters for lag = 1 do not lie on the diagonal (not shown).

Figure 4.15 shows negative-going return maps (lag = 1) for Ay.Non-chatter cutting at 75-100
RPM shows clusters along the diagonal, T(i+1) = T(i), indicative of period-l motion, plus other
clusters corresponding to multiple periodicities. Only compact clusters appear along the diagonal
at 125-150 RPM during chatter. The complexity of these return maps decreases as the spindle
speed increases. Moreover, the number of points in clusters #6-7 decreases monotonically ftom
>250 for dataset #091801 (subplot-a) to zero for dataset #091803 (subplot-c). This trend led us
to retain the short return-time data that is associated with clusters #6-7, which otherwise would
be rejected as noise. These results implythat Aymotion dominates the transition ftom non-chatter
(multiple periodicities) to chatter (period-I) dynamics. These results also implythat control of
dynamics along the tool (y) axis is essential for chatter reduction or avoidance.

Figure 4.16 shows positive-going return maps (lag = 1) for Ay.The difference between Figs.
4.15 and 4.16 arises because the workpiece constrains tool motion in the negative-going direction,
but positive-going motion is unconstrained. Multiple periodicities occur at 75-100 RPM (no
chatter), and compact period-l clusters appear at 125-150 RPM (chatter). The return map
becomes simpler as the spindle speed rises. The number of short return-time points decreases with
increasing spindle speed, and is zero for ~125 RPM. This trend led us to retain short return-time
data, rather than rejecting them as noise. These results confirm that Aymotion dominates the non-
chatter-to-chatter transition, and that chatter control must focus on dynamics along the tool axis.
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Anti-control [22:-26]is a potential control strategy for chatter, requiring knowledge of the
stable and unstable manifolds (directions of motion). However, identification of(un)stable
manifolds is very difficult for this system due to the discrete periodicities (Figs. 4.15 - 4.16). This
discreteness is in sharp contrast to other published return maps (e.g., Fig. 2 of Ref. 26) which
have no discrete features. To clarifYthis discretization,Fig. 4.17 shows the ftequency of positive-
and negative-going return times (Ti) for Ayin equally spaced bins, normalized to the largest peak
value. The number of peaks in the positive-going return times (solid curves) decreases ftom 8 at
75 RPM (subplot-a) to 4-5 at 100 RPM (subplots-b and -c). The number of negative-going return
time peaks (dashed curves) likewise decreases from 6 at 75 RPM (subplot-a) to 3 at 100 RPM
(subplots-b and -c). Return time distributions at higher RPM (not shown) have a single peak at
32-33 timesteps, corresponding to the period-l cluster that was identified above. Thus, the
number of discrete periodicities decreases with increasing spindle speed for non-chatter cutting,
becoming a single dominant frequency during chatter.

The Aydynamics move from cluster to cluster in a variety of ways. For example, four distinct
sequences of motion occur among the clusters in the negative-going return map for Ayat 100
RPM (dataset #091803). Table 4.2 shows these sequences, which by convention begin and end at
cluster #1, as shown in Fig. 4.15c. Fifty-fivedistinct sequences occur at 75 RPM for the negative-
going return map of Ay(Fig. 4. 15a), but enumerating all of them is not useful. Instead, we found
a clear pattern in the all of the sequences, corresponding to subplots-a, -b, and -c of Fig. 4.15.
Namely, the negative-going Aymotion always leaves cluster #1 with the sub-sequence, 1 > 2, and
returns to cluster # 1 with the sub-sequence, 5 > 1. The distinction among clusters is unclear in
Fig. 4.16, particularly for subplots-b and -c, implyingthat this approach is not useful in general.

Table 4.2 Sequences of motion in Fig. 4.15c.

Sequence (by cluster number) Frequency (%)

1>2>4>5>1
1>2>4>3>4>5>1
1>2>4>5>2>4>5>1
1>2>4>5>2>4>3>4>5>1

90.0
6.8
2.6
0.5



41

1.0

(b)
>- 0.8
()
z
w
=>

8' 0.6
0:::
lL.
/:)
W

~ 0.4
~
0:::
o
Z

0.2

0.0
o 10 20 30 40

RETURNTIME(TIMESTEPS)
50

Fig. 4.17. Normalized frequency distribution of postive-going (solid curves) and
negative-going (dashed curves) return times for Ay= 0 from: (a) dataset #091801 (75 RPM),
(b) dataset #091802 (100 RPM), and (c) dataset #091803 (100 RPM).

1.0
t

(a)
I

0.8>-
()
z
w
=>

8' 0.6
0:::
lL.
/:)
W

0.4
«

0:::
0
z

0.2, ..... ,{".', . ., I ,I
" '" : ''''I...

0.0 I J, '.. . ,V,. l.. I"t.. '. '. . . I .'
0 10 20 30 40 50

RETURN TIME (TIME STEPS)

1.0r

0.8 L.(c)>-
()
z
w
=>
8' 0.6
0:::
lL.
/:)W

0.4
«
0:::
0
z

0.2

o.o.. A". . ,,:,,, t','
0 10 20 30 40 50

RETURN TIME (TIME STEPS)



42

5. CONCLUSIONS

We examinedtime serial machiningdatasets, measured at a samplingrate of 15 kilohertz. The
data consisted of three orthogonal forces, three orthogonal accelerations, and three motor
currents. We found that the force and motor current data were of insufficientquality for detailed
analysis, due to inadequate data precision and poor frequency response of the force sensor.

We used a higher samplingrate (50 kilohertz) for further analysisof the three acceleration
components. We obtained datasets at various spindle speeds for a fixed depth of cut and a fixed
feed rate. At all spindle speeds, the dominant frequency in the feed direction is twice that of the
cutting and tool axis directions. All three spatial components of acceleration display important
dynamics. Thus, a tool-part model should account for motion in all three spatial directions.

Our analysis also revealed several important features of chatter and non-chatter dynamics.

. Non-chatter dynamics occur at low spindle speeds, with several discrete periodicities, low
acceleration amplitude, and complex features in the motion along the tool axis;

. Chatter occurs at high spindle speeds, with high acceleration amplitude, low complexity, and
period-l dynamics along the tool axis;

. Motion along the tool axis dominates the transition from non-chatter to chatter cutting;

. Nonlinear methods show the transition from the non-chatter to chatter before detection by an
experienced operator, and may serve as predictors of this transition.

Our results also point to some likelyalternatives for chatter control. Based on the presence of
multiple periodicities during non-chatter cutting, we hypothesize that enhancement of low-
amplitude chaos along the tool axis may suppress chatter. For example, chatter may be inhibited
by chaos "anti-control," i.e., feedback control that enhances or maintains chaos. Another potential
control strategy involves feedback changes that have the effect of mechanicallydamping the
period-l motion (dynamic damping) along the tool axis. We hope to pursue such approaches in
subsequent work.
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