
19 July 1999

Ž .Physics Letters A 258 1999 103–114
www.elsevier.nlrlocaterphysleta

Detecting dynamical change in nonlinear time series

L.M. Hively, P.C. Gailey, V.A. Protopopescu
Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge, TN 37831-8066, USA

Received 23 February 1999; received in revised form 19 May 1999; accepted 19 May 1999
Communicated by C.R. Doering

Abstract

We present a robust, model-independent technique for measuring changes in the dynamics underlying nonlinear
time-serial data. After constructing discrete density distributions of phase-space points on the attractor for time-windowed
data sets, we measure the dissimilarity between density distributions via L -distance and x 2 statistics. The discriminating1

power of the new measures is first tested on the Lorenz model and then applied to EEG data to detect the transition between
non-seizure and epileptic activity. We find a clear superiority of the new measures in comparison to traditional nonlinear
measures as discriminators of changing dynamics. q 1999 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

A problem frequently encountered in nonlinear
time-series analysis is appropriate characterization of
changes in the system dynamics. One approach to
this problem is to statistically test for stationarity.
However, such tests produce a binary result, namely
they indicate whether or not a change occurred but
provide no information about the extent of departure
from one state to another. Stationarity tests also have
limited value for inherently nonstationary processes
that undergo frequent or continual changes in dy-

Ž .namics e.g., physiological data, like EEG . For such
nonstationary processes, a measure of dissimilarity
that quantifies the ‘distance’ between attractors turns

w xout to be more useful 1,2 . We describe four sensi-
tive measures of dissimilarity, applying them first to
model data and then to physiological data. Our

.method is useful for 1 discriminating between dif-
.ferent and possibly close chaotic regimes, and 2

monitoring the extent of departure of a system from
an initial dynamical state. Straightforward methods

w xexist 11 for discriminating between regular and
chaotic motion, or for detecting the transition be-
tween these regimes. However, distinguishing differ-
ent chaotic regimes can be very difficult, especially
when data are limited and noisy.

The paper is organized as follows. Section 2
discusses some traditional nonlinear measures for
analysis of time series. Section 3 presents our indica-
tors of dynamical change by comparison of the
phase-space distribution functions via distance mea-
sures. Section 4 describes the discriminating power
of these measures on the Lorenz model, in which
changes are easily monitored and controlled. Finally,
Section 5 explains the use of these measures on
experimental EEG data to detect the transition be-
tween non-seizure and epileptic brain activity. While
the dissimilarity measures reflect the inherent noise
in the EEG data, detection of pre-seizure states is
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highly superior to that realized using traditional non-
linear measures.

2. Nonlinear measures from time series

Our analysis begins with a scalar signal, x, arriv-
ing from a dynamical system whose dimensionality
and structure are usually unknown. This variable is
sampled at equal time intervals, t , starting at time,

Ž .t , yielding a sequence of N points, x sx t q it .0 i 0
w xDynamical process reconstruction 3 uses d-dimen-

Ž . wsional time-delay vectors, y i s x , x , . . . ,i iql

xx , for a system with d active variables andiqŽdy1.l

time lag, l. The choice of lag and embedding di-
mension, d, determine how well the phase space
reconstruction unfolds the dynamics for a finite
amount of noisy data. Takens found that, for a
d-dimensional system, 2 dq1 dimensions generally
results in a smooth, nonintersecting reconstruction
w x w x5 . Sauer et al. 6 showed that, under ideal condi-
tions, the first integer greater than the correlation
dimension is often sufficient to reconstruct the sys-
tem dynamics. This last statement has been con-
firmed by computing the embedding dimension via

w xthe false nearest-neighbors method 7–9 . However,
real data have finite length and are affected by noise,
implying that too high an embedding dimension may
result in over-fitting. We further note that different
observables of a system contain disparate levels of

w xdynamical information 10 , implying that phase
space reconstruction could be easier from one vari-

Ž .able, but more difficult or even impossible from
another. Our subsequent analysis is mindful of the
balance between these caveats and the constraints
imposed by the limited amount of noisy data.

Based on the phase space reconstruction, various
nonlinear measures have been defined to characterize
process dynamics. We choose three of these nonlin-
ear measures, against which we compare the new

Ž .metrics. In particular, we use: i the first minimum
in the mutual information function as a measure of

Ž .decorrelation time, ii the correlation dimension as a
Ž .measure of dynamic complexity, and iii the Kol-

mogorov entropy as a measure of predictability. We
describe these three measures in the following para-
graphs.

Ž . Ž .i The mutual information function MIF is a
Ž .nonlinear version of the linear auto-correlation and

cross-correlation functions, and was originally devel-
w xoped by Shannon and Weaver 12 with subsequent

application to time series analysis by Fraser and
w xSwinney 13 . The MIF measures the average infor-

Ž .mation in bits that can be inferred from one mea-
surement about a second measurement, and is a
function of the time delay between the measure-
ments. Univariate MIF measures predictability within
the same data stream at different times. Bivariate
MIF measures predictability of one data channel,
based on measurements in a second signal at differ-
ent times. For the present analysis, we use the first
minimum in the univariate MIF, M , to indicate the1

average time lag that makes x independent of x .i j
Ž .The MIF, I Q, R , and system entropy, H, for two

measurements, Q and R, are defined by:

I Q, R s I R ,Q sH Q qH R yH Q, R ,Ž . Ž . Ž . Ž . Ž .
1Ž .

H Q sy P q log P q , 2Ž . Ž . Ž . Ž .Ý Q i Q i
i

H Q, R sy P q ,r log P q ,r . 3Ž . Ž . Ž . Ž .Ý Q R i j Q R i j
i , j

Q is one set of data measurements, q ,q , . . . ,q ,1 2 n
Ž . Ž .with associated probabilities P q , P q , . . . ,Q 1 Q 2

Ž .P q . R denotes a second set of data measure-Q n

ments, r ,r , . . . ,r , with a time delay relative to the1 2 n
Ž .q values, having associated probabilities P r ,i R 1

Ž . Ž . Ž .P r , . . . , P r . The function P q ,r denotesR 2 R n Q R i j

the joint probability of both states occurring simulta-
neously. H and I are expressed in units of bits if the
logarithm is taken in base two.

Ž .ii The maximum-likelihood correlation dimen-
w xsion, D, is defined by 14,15 :

y1
1 d rd yd rdi j 0 n 0

Ds y ln , 4Ž .Ý½ 5M 1yd rdn 0i , j

where M is the number of randomly sampled point
pairs; d is the maximum-norm distance betweeni j

Ž .the randomly chosen i–j point pairs, as defined in
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Ž . Ž . Ž .Eq. 6 below . The distance scale length d isn

associated with noise as measured from the time
serial data. Note that the distances are normalized
with respect to a nominal scale length d , which is0

chosen as a balance between sensitivity to local
Ž .dynamics typically at d F 5a and avoidance of0

Ž .excessive noise typically at d Ga . Here, the sym-0

bol a denotes the absolute average deviation as a
w xrobust indicator of variability 15 in the time serial

data:

w1
< <as x yx , 5Ž .Ý iw is1

where x is the mean of x over a window of wi
Ž .points. The distances d are defined by:i j

< <d s max x yx , 6Ž .i j iqk jqk
0FkFmy1

where m is the average number of points per cycle.
Ž .iii The Kolmogorov entropy, K , measures the

Žrate of information loss per unit time, or alterna-
.tively the degree of predictability. A positive, finite

entropy generally is considered to be a clear demon-
stration that the time series and its underlying dy-
namics are chaotic. A large entropy indicates a

Ž .stochastic, non-deterministic totally unpredictable
phenomenon. One estimates the entropy from the
average divergence time for pairs of initially-close
orbits. More precisely, the entropy is obtained from
the average time for two points on an attractor to go

Ž .from an initial separation d-d , to a separation of0
Ž .more than a specific distance d)d . The maxi-0

mum-likelihood entropy is calculated from the
method by Schouten, Takens, and van den Bleek
w x16 :

1
Ksyf log 1y , 7Ž .s ž /b

M1
bs b , 8Ž .Ý iM isj

with b as the number of timesteps for two points,i

initially within d-d , to diverge to d)d . The0 0

symbol f denotes the data sampling rate.s

Entropy and correlation dimension usually are
defined in the limit of zero scale length. However,
all real data have noise and even noiseless model
data is limited by the finite precision of computer
arithmetic. Thus, we choose a finite scale length that

Ž .is slightly larger than the noise d s2 a , at which0

to report the values of K and D, corresponding to
finite-scale dynamic structure. Consequently, the val-
ues of K and D that we report do not capture the
full dynamical complexity and have smaller values

Žthan expected for the zero-scale-length limit d ™0
.0 .

3. Definition and use of the new measures

The traditional nonlinear measures of the previous
section characterize global features of the nonlinear
dynamics, but do not reveal slight dissimilarities
between dynamical states. The same is true for other
global indicators, such as fractal dimension, Lya-
punov exponents, etc. This lack of discrimination
occurs, because the traditional measures are based on
averaged or integrated system properties of the at-
tractor, which provides a global picture of long-term
dynamical behavior. Traditional nonlinear measures
ultimately provide only one or a few scalar measures
as summary descriptors of large data segments.

Greater discrimination is possible by more de-
tailed analysis of the reconstructed dynamics. The

Ž .natural or invariant measure of the attractor is a
more refined representation of the reconstruction,
describing the visitation frequency of the system
dynamics over the phase space. We first represent
each signal value, x , as a symbolized form, s , thati i

is one of S different integers, 0,1, . . . ,Sy1:

S x yxŽ .i min
0Fs s INT FSy1. 9Ž .i x yxmax min

Here, x and x denote the minimum and maxi-min max

mum values of x , respectively, over both the basei
Ž . Žcase reference data and over the test cases subse-

quent data to be tested for departure from the base
.case . The inequality 0Fs FSy1 holds triviallyi

Ž .for x Fx -x . We require that s x sxmin i max i i max

sSy1 in order to maintain exactly S distinct sym-
bols. Thus, the phase space is partitioned into Sd
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hypercubes or bins. We then obtain the distribution
function as a discretized density on the attractor, by
counting the number of phase-space points occurring
in each bin. We denote the population of the i-th bin
of the distribution function, Q , for the base case,i

and R for a test case, respectively. For infinitelyi

precise data, this representation has been used in
w x Ž .17 . The choice of parameters S, N, and d de-
pends on the specific data under consideration. For
this initial work, we iteratively varied each parameter
with the others fixed, to obtain optimum sensitivity
of the measures to changes in system dynamics for

Žeach class of data evaluated. All analyses of EEG
data described in Section 5 were performed with the

.same values of S, N, and d . A systematic method
to determine optimal values for these parameters is
the subject of future work.

Ž .We use an embedding window, M s dy1 l,1

based on the first minimum in the mutual informa-
w x wtion function, M 13 . Then, we set ls INT 0.5q1

Ž .xM r dy1 to obtain an integer value for the recon-1

struction lag when M is not evenly divisible by1
Ž .dy1. The function INT converts a decimal num-

ber to the next lower integer, and M is measured in1

timesteps. The reconstruction requires that lG1,
thus constraining the largest value of dimensionality
to dF2 M q1 from the above formula.1

We next compare the distribution function of an
unknown process state to that of a basecase. Previous

w xwork 18 measured differences between delay vector
distributions by the square of the distance between
two distribution functions. Here, we measure the
difference between Q with R by the x 2 statisticsi i

and L distance:1

2Q yRŽ .i i2x s , 10Ž .Ý
Q qRi ii

< <Ls Q yR . 11Ž .Ý i i
i

where the summations in both equations run over all
of the populated cells in the phase space. The choice
of these measures is dictated by the following con-
siderations. The x 2 statistics is one of the most
powerful, robust, and widely-used statistical tests to
measure discrepancies between observed and ex-

pected frequencies. The L distance is the natural1

metric for distribution functions since it is directly
related to the total invariant measure on the attractor.
To apply these measures properly we have to scale
the total population of the unknown distribution

Ž .function sum over all the domain populations in Ri

to be the same as the total population of the base-
Ž .case. The sum in the denominator of Eq. 10 is

based on a test for equality of two multinomial
w xdistributions 19 .

By connecting successive phase space points as
Ž . Ž .indicated by the dynamics, y i ™y iq1 , one ob-

w xtains a discrete representation of the process flow 4 .
This approach motivates the extension of the method
to capture even more dynamical information using
pair-wise connectivity between successive d-dimen-
sional states. We thus form a 2 d-dimensional vector,
Ž . w Ž . Ž .xY i s y i , y iq1 , in the connected phase space.

As before, Q and R denote the distribution functions
for the basecase and testcase, respectively, in the
connected phase space.

We use base S arithmetic to assign an identifier
Ž .Is I to the ith phase-space state, via I si i

ky1 Ž .Ýd s k . The sum runs from ks1 to ksd,i

corresponding to the successive components of the
d-dimensional phase-space vector. The symbol for
the k th component of the ith phase-space vector is
Ž .s k . The numeric identifier for the sequel phase-i

space point is then Js I . Then, we can define theiq1

measure of the dissimilarity between these two con-
nected phase space states, as before, via the L -dis-1

tance and x 2 statistic:

2
Q yRŽ .i j i j2x s , 12Ž .Ýc Q qRi j i jij

< <L s Q yR . 13Ž .Ýc i j i j
ij

The subscript c indicates the connected distribution
function measure. The connected phase space ap-
proach is consistent with Takens’ reconstruction the-

w xorem 5 as discussed above, when d is larger than
the dimensionality of process for unlimited noise-free
data. We note that the value ls1 results in dy1

Ž .components of y iq1 being redundant with those
Ž .of y i , but we allow this redundancy to accomodate
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other data such as discrete points from the Henon
Ž . Ž .map. The measures defined in Eqs. 10 – 13 satisfy

the following inequalities:

x 2 FL, 14Ž .

x 2 FL , 15Ž .c c

LFL , 16Ž .c

x 2 Fx 2 . 17Ž .c

Ž .To prove Eq. 14 , we note that for any non-negative
Ž . < <numbers, Q and R , we have Q qR G Q yR .i i i i i i

Ž .2 < < 2Dividing the equality Q yR s Q yR by thei i i i
Ž .2 Ž .preceding inequality yields Q yR r Q qR Fi i i i

< <Q yR , which completes the proof when summedi i
Ž .over all values of i. One can prove Eq. 15 by the

Ž .same argument. The proof for Eq. 16 follows di-
rectly from the definition of the L -norm:1

< < < <Ls Q yR s Q yRŽ .Ý Ý Ýi i i j i j
i i j

< <F Q yR sL . 18Ž .Ý Ý i j i j c
i j

Ž .The proof of Eq. 17 is more cumbersome, but it
follows without difficulty from a complete induction

w xargument 20 . These inequalities show that, as ex-
pected, the measures of condition change for the
connected phase space are stronger than those for the
phase space representation.

In the subsequent application of the new phase
space measures to discriminate condition change, we
note that distribution function values depend on one
another due to phase space construction from time

w xdelay vectors with dynamical structure 18 . The
resulting statistical bias is avoidable by averaging

Ž . Ž .contributions to Eqs. 10 and 12 over values of
Ž . Ž . < < w xy j or Y j which satisfy iy j -L 18 , where L

is some largest typical correlation scale length in the
time series. We tested the bias in typical data by
sampling every L-th connected phase space point for
4FLF23, resulting in L different samples for the

Ž . Ž .base case Q and for each cutset R . We theni i

averaged the sampled x 2 values over the L2 differ-
ent combinations of distribution functions for the
basecase and testcase cutsets. As expected, a de-

crease proportional to 1rL occurs in the sampled x 2

values, because the number of data points contribut-
ing to x 2 decreases in the same proportion. The
trend over time in sampled x 2 values remains the
same as in x 2 values without sampling, showing
that no unexpected bias is present. Thus, we use
unsampled x 2 values for the remainder of this work
as a relatiÕe measure, rather than as an unbiased
statistic for accepting or rejecting a null statistical
hypothesis.

4. Application to the Lorenz model

We assess the discriminating power of the new
measures by testing them on the well-known Lorenz

w xmodel 21 :

dx dy
sa yyx , srxyyyxz ,Ž .

dt dt

dz
sxyybz . 19Ž .

dt

Some traditional nonlinear measures are good indica-
tors of a bifurcation or transition to chaos. However
transitions between two chaotic regimes are not read-
ily detected by these same measures, especially for
relatively small changes in the parameter that under-
lies the transition. Therefore, the present work con-
centrates on detecting nonstationarity within a region
where the Lorenz system is known to behave chaoti-

w xcally 22 : as10, bs8r3, and 25FrF90. We
integrate the model using a multistep, multi-order

w xmethod by Sampine and Gordon 23 .
Ž .We calculated 200 000 data values of x, y, z at

fixed time intervals of ts0.01 for each value of r.
Ž .We obtained the connected phase space measures

by partitioning each 200 000-point Lorenz dataset
into four non-overlapping subsets of 50 000 points
each, for comparison to each of the 50 000-point
subsets of basecase at rs25. We compared each of
the four testcase subsets to each of the four basecase
subsets, yielding sixteen values for each of the four
measures of dissimilarity, from which we obtain a
mean and the standard deviation of the mean. We
found that all three coordinates of the Lorenz system
provide some degree of dissimilarity detection. For
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example, Fig. 1 shows various nonlinear measures
versus r, by analyzing only the y component of the

ŽLorenz system. We obtain similar results for the x
component of the Lorenz system. The measures of
dissimilarity increase monotonically for the z com-

.ponent for 25FrF47, then become constant. The
Ž .correlation dimension Fig. 1a varies erratically be-

tween 1.95 and 2.65, over the whole range. The
Ž .Kolmogorov entropy Fig. 1b also varies somewhat

while gradually rising from 0.037 to 0.085. Fig. 1c

Ž . Ž .Fig. 1. Nonlinear measures versus r for the Lorenz system, calculated from the y component: a correlation dimension, D, b Kolmogorov
Ž . Ž . 2 5 Ž . 5entropy, K , c location of the first minimum in the MIF, M , d x r10 , and e Lr10 . The error bars on D and K correspond to 95%1

Ž .confidence intervals. The phase space reconstruction parameters are Ss12, ds3, N s 50 000, and ls4. The connected phase space
Ž .measures are the top bottom curves, respectively, in Figs. 1d and 1e.
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show the location of the first minimum in the mutual
information function, M with a monotonic but step-1

wise decrease as r rises, so that relatively large
Žintervals of r are poorly indicated 71FrF87, for

.instance . A reduction in the sampling interval would
reduce the size of these stepwise regions, but this
exercise serves as a realistic test of the measures on
real data with a limited sampling rate when such a

Žreduction is not possible. In sharp contrast, the con-
. Ž .nected phase space measures Figs. 1d and 1e

increase almost monotonically from zero to more
than 105 as r rises from 25 to 90. The values of L
and x 2 essentially coincide over the whole range
because the measures are dominated by phase space

Žbins that are populated only for the basecase Q )0i
. Ž .for R s0 and only the testcase R )0 for Q s0 ,i i i

for which the two measures become analytically
equivalent. The curves in Figs. 1d and 1e correspond
to the average measure of dissimilarity, while the
error bars indicate the standard deviation of the
means. We show error bars for the phase-space
metrics only, because error bars for the connected
phase measures are comparable. As expected from

Ž . Ž .Eqs. 14 – 17 , the connected phase-space measures
are stronger than their non-connected counterparts.

5. Application to EEG data

We turn next to analysis of brain wave data,
which have been described in terms of nonlinear

w xdynamics 24 . Nonlinear EEG measures are not
w xstationary 25 , displaying marked transitions be-

tween normal and epileptic states. EEG data display
w xlow-dimensional features 24,26 with at least one

w xpositive Lyapunov exponent 24,27 and hence finite
Kolmogorov entropy. EEG data also displays clear

w xphase space structure 24,27 , which the above analy-
sis shows is useful for measuring condition change
in the Lorenz attractor. Thus, use of the new L and1

x 2 phase space measures is plausible for detection
of nonlinear condition changes in brain wave data.

We obtained sixteen channels of analog EEG data
w xin the bipolar montage from archival VHS tapes 28 .

We converted this data to 12-bit digital form at a
sampling rate of 512 Hz. We choose ws20480 data
points for each unknown cutset, consistent with

w xManuca et al. 25 who found a one-dimensional

‘meta phase-space’ for windows of F40 seconds.
We use the first 400 seconds of EEG data to con-
struct ten 40-second basecase cutsets, each with ws
20480 points. Then, we compare each of the ten
basecase cutsets to every unknown cutset to obtain

2 Žaverage values for x and L and the corresponding
.standard deviation of the mean . We overlap adjacent

unknown cutsets by 50% for an optimal mix of new
w xand old data 29 for smooth time-history trending.

Brain dynamics in EEG are obscured by muscular
activity due to eye blinks, facial twitches, etc. One
can avoid these artifacts by obtaining EEG data from
depth and subdural electrodes, although such meth-
ods are invasive and non-ambulatory. Furthermore,
standard high-pass filtering techniques introduce
phase distortions that are unacceptable for nonlinear
analysis. Instead, in order to retain nonlinear ampli-
tude and phase relationships, we remove most of the
low frequency artifacts corresponding to eye blinks

w xwith a zero-phase quadratic filter 28,20 .
w xOur previous analysis of EEG data 28,31 found

correlation dimension values of 1 to 2.6 for non- and
pre-seizure activity, and G6 during a seizure, con-

w xsistent with others’ work 24,26 . These results sug-
gest a choice of dF7 for the connected phase space
reconstruction. However, we find that ds7 overfits
the EEG data due to noise, modest cutset size, and
the finite precision. This finding does not contradict

w xthe Takens’ reconstruction theorem 5 , which ap-
plies to an infinite amount of arbitrarily precise,
noise-free data. We find that ds3 and Ss34 are
adequate for the present work, with the value of M1

for the phase space measures taken from the first 400
Ž .seconds of non-seizure data.

Fig. 2 shows a typical plot of nonlinear EEG
measures versus time. For the first 800 seconds,
variability in all of the measures is modest, repre-
senting the dynamics of normal brain activity. The
clinical seizure occurs at 2620–2726 seconds, as
indicated by the vertical bars at these times in this
Ž .and the subsequent figure. A pre-seizure indication
in D occurs as a small decrease at 1150 seconds
Ž .Fig. 2a . Likewise, a pre-seizure indication in K is

Ž .a small peak at 1150 seconds Fig. 2b . Later varia-
tions in D and K provide no clear pre-seizure
indication in Fig. 2. The value of M rises slowly1

Žfrom 12 to 20 during the non-seizure period 0–1100
.seconds , then falls gradually to an average value of
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Ž . Ž . Ž .Fig. 2. Nonlinear measures versus time for dataset a62723t: a correlation dimension, b Kolmogorov entropy, c first minimum in the
Ž . Ž . Ž . Ž . 2 Ž . 2MIF in timesteps , d L , e L, f x , and g x .c c

Ž . Ž14 range: 11–20 during the pre-seizure period Fig.
.2c . During the seizure, D and K show clear peaks,

while M falls abruptly. In sharp contrast to these1

weak pre-seizure indications, clear peaks occur in the
Ž .PS measures Figs. 2d–g at 1150, 1300, 1600, and

2350 seconds. We next discuss conversion of these
measures to a renormalized metric.

Since these metrics are very disparate in range
and interpretation we present the results in a renor-
malized framework to facilitate comparison. For a
given nonlinear measure V, we define V as the valuei

of nonlinear measure for the i-th cutset; V is the
Ž .mean value of V over the first 400 non-seizurei

seconds of the dataset, with a corresponding sample
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standard deviation, s . The renormalized measure is
Ž . Ž .defined as U V s V yV rs . In our case, V is ini

turn D, M , K ,x 2, etc. Fig. 3 compares these change1

metrics for the same dataset as Fig. 2. To avoid
spurious change indications, we define a positive

indication of change as two or more consecutive
values of the change metric, U)U . The horizontalc

line in each subplot of Fig. 3 shows the limit, Uc

s4.75, corresponding to a false positive probability
of -10y6 in Gaussian random data. The change

Ž . Ž . Ž .Fig. 3. Change metrics versus time for dataset a62723t: a correlation dimension, b Kolmogorov entropy, c first minimum in the MIF,
Ž . Ž . Ž . Ž . 2 Ž . Ž . Ž .d L measure for CPS solid and PS - - , and e x measure for CPS solid and PS - - . The ordinate values of the change metric U1

are in units of standard deviations from the mean.
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Ž .metric for correlation dimension, U D , occurs above
Ž .this limit only briefly during the seizure Fig. 3a .

Ž . Ž .U K briefly rises above this limit Fig. 3b at 1200
Ž .seconds, and also later during the seizure. U M is1

above the limit only for two brief periods following
the seizure. In sharp contrast, the change metrics for
the PS measures rise well above this limit at 1130

Ž 2 2 .seconds for x and for x and at 1210 secondsc
Ž .for L and L . Table 1 summarizes the time valuesc
Žmeasured in seconds prior to the onset of the clini-

.cal seizure , at which a positive indication of change
occurs for each measure over nine EEG datasets. A
negative value for this time corresponds to positive
indication of change after the clinical seizure onset.
Analysis of normal EEG data shows no positive
indication of condition change. All of the phase
space measures show positive indications of change
for all of the seizure datasets. As expected, the
connected phase space measures are better, with an
average pre-seizure indication time of 967 and 954
seconds for L and x 2, respectively, as compared toc c

average indication times of 916 and 927 seconds for
L and x 2, respectively. Although the average times
for positive indication are larger for D, K , and M1

Table 1
ŽTimes prior to seizure at which condition change is detected in

.seconds
2 2Dataset a D K M L L x x best1 c c

U
109310 2435 1135 1135 815 1155 y65 2435
109314 1080 1920 2180 2180 2180 1940 2180 2180

U
119230 2031 471 891 891 891 891 2031
119234 2040 2040 2100 2100 2100 2100 2100 2100

U
62723t y160 1360 1700 1700 1700 1700 1700
69212 696 976 676 716 716 716 716 976

U U U
73305D 745 765 645 765 765

U
c8492D 186 146 366 566 366 566 566

U U U
wm12sD 21 21 21 501 501

Maximum 2435 2040 2180 2180 2180 2100 2180
time
Minimum y160 186 146 21 21 21 y65
time
Average 1354 1155 1276 1095 1084 1059 1039
time
a no 3 2 5 0 0 0 0
indications

ŽU .Entries denoted by an asterisk show no positive indication of
condition change. For each dataset, bold entries denote the earliest
time of dissimilarity indication.

by 17–300 seconds, several instances exist for no
positive indication of change in D, K , and M . Since1

later indication of change is better than no indication,
we conclude that the phase space measures are supe-

Žrior to the conventional nonlinear measures D, K ,
.and M as indicators of condition change. A topic1

of future research is improvement of the method to
provide the earliest possible indication of condition
change.

Our approach differs markedly from earlier work
w x26,27 in several respects. First, previous investiga-
tions used data from subdural and depth electrodes,
while we use scalp EEG data that allows non-inva-
sive, ambulatory, long-term monitoring. Second,
those studies obtained EEG data from the epilepto-
genic area, while we used data only from channel 13
in the bipolar montage, showing the robustness of
our method, and allowing easy electrode placement
by a patient for non-clinical monitoring. Third, prior
effort used invasive monitoring to avoid low-
frequency artifacts, which we removed from scalp
data with a zero-phase quadratic filter, dramatically
improving the data quality and the nonlinear mea-
sures. Fourth, previous investigations focused only
on temporal lobe epilepsy, while we earlier deter-
mined no consistent trends in D and K for various
seizure types and instead focused on these new
measures of condition changes for any seizure. These
advantages will facilitate routine use by patients in a
non-clinical setting.

Practical use of this method for forewarning of
epileptic events will require characterization of sev-
eral seizures for each patient, and detailed determina-
tion of detection criteria. Future work will involve:
Ž .i statistical evaluation of false positives and nega-
tives in epileptic patients, and of false positives in

Ž .normal patients and ii clinical monitoring of each
patient to determine optimal reconstruction parame-
ters, which subsequently would be fixed for ambula-
tory monitoring.

6. Discussion

We presented two new model-independent indica-
Ž .tors to detect condition change dissimilarity in

nonlinear time series. These new measures have a
firm theoretical basis in the invariant measure that



( )L.M. HiÕely et al.rPhysics Letters A 258 1999 103–114 113

w xthe dynamics determines on the attractor 22 . The
connected phase space distribution function also con-
tains information about the dynamical flow from one
attractor state to the next. The new indicators of
condition change measure the difference between
these density functions for a base case and a test
case, as x 2 statistics and L distance. Thus, these1

Ž .indicators integrate and magnify the differences
between the process dynamics, and avoid the inner
cancellation effects due to averaging over many or-

Žbits as one does, for instance, when calculating the
.correlation dimension and Kolmogorov entropy .

Moreover, this approach represents the dynamics of
noisy, finite-length, finite-precision data, in a way
that does not contradict the Takens’ reconstruction

w xtheorem 6 , as discussed above. Changes in the
Lorenz attractor are clearly detected by these new
measures and by the mutual information, as r in-

Ž .creases from 25 to 90 Fig. 1 . On the other hand,
these changes go almost undetected by the correla-
tion dimension and Kolmogorov entropy. These new
measures also indicate significant pre-seizure changes

Ž .in all nine analyzed EEG datasets Table 1 . How-
ever, correlation dimension, Kolmogorov entropy,
and mutual information fail to detect any change at
all in three, two, and five EEG datasets, respectively.
These results show that the new measures are supe-
rior to traditional nonlinear measures for detection of
condition change.

We found that indications of condition change
Žexist over a range of embedding parameters d, S,

.and l , for the following reason. If the full distribu-
Ž .tion function in the actual phase space is r Z , then

Ž .a partially reconstructed distribution function, r Y ,
Ž .is the sum over regions of r Z that map into Y,

multiplied by the Jacobian determinant for the change
in variables. Thus, the information in every compo-
nent of Z will affect the Y space, unless the projec-
tion, Z™Y, is chosen carefully to avoid depen-

w xdency, which we have not done. Kennel 30 used
this approach to test for dynamical nonstationarity in
experimental data without resolving the dimensional-
ity in the time series. The important question of
finding the optimal embedding parameters for de-
tecting nonstationarity with our measures will be

w xaddressed elsewhere 20 .
w xAn earlier version 31 of this approach was suc-

cessful for various physical processes. Examples in-

clude: distinguishing different drilling conditions
from spindle motor current of a machining center;
detecting balanced and unbalanced centrifugal pump
conditions from motor power; predicting failure of a
bellows coupling in a rotating drive train from motor
power; and discerning the difference in microcan-
tilever vibrations with and without mercury on the
sensor. Success for such diverse applications sug-
gests that this technique can be reliably used for
detecting condition change in nonlinear dynamical
processes.
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