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ABSTRACT  

 
One of the most important problems in time-series analysis is the suitable characterization of the 

dynamics for timely, accurate, and robust condition assessment of the underlying system. Industrial 
applications involve prognostication of machine failures, thus reducing costly machine repairs, 
avoiding complete breakdown with potentially catastrophic effects, and decreasing concomitant and 
human down-time.  Biomedical applications include detection and forewarning of abnormal 
physiological behavior to avoid (or at least reduce) the harmful effects of various medical crises, 
decrease patient hospitalization, and lower costs of health care and lost productive time.   

 
Both machine and physiological processes display complex, non-stationary behaviors that are 

affected by noise and may range from (quasi-)periodic to completely irregular (chaotic) regimes.  
Nevertheless, extensive experimental evidence indicates that even when the systems behave very 
irregularly (e.g., severe tool chatter or cardiac fibrillation), one may assume that - for all practical 
purposes - the dynamics are confined to low dimensional manifolds. As a result, the behavior of these 
systems can be described via traditional nonlinear measures (TNM), such as Lyapunov exponents, 
Kolmogorov entropy, and correlation dimension. However, while these measures are adequate for 
discriminating between clear-cut regular and chaotic dynamics, they are not sufficiently sensitive to 
distinguish between slightly different irregular (chaotic) regimes, especially when data are noisy and/or 
limited. Both machine and physiological dynamics usually fall into this latter category, creating a 
massive stumbling block to prognostication of abnormal regimes. 

 
We present here a recently developed approach that captures more efficiently changes in the 

underlying dynamics. We start with process-indicative, time-serial data, recognizing that some data 
capture most aspects of the dynamics, while other data may not. The data are checked for quality, and 
inadequate data (e.g., lost data points, intervals with unchanged signal amplitude, excessive periodic 
content, excessive noise, saturation at high or low limits, and inconsistent signal amplitude across 
datasets in a test sequence) are discarded. Acceptable data are filtered to remove confounding artifacts 
(e.g., sinusoidal variation in three-phase electrical signals or eye-blinks and muscular activity in EEG). 
The artifact-filtered data are then used to recover the essential features of the underlying dynamics via 
standard time-delay, phase-space reconstruction. One of the main results of this reconstruction is a 
discrete approximation of the distribution function (DF) on the attractor.  Unaltered dynamics yield an 
unchanging geometry of the attractor and the visitation frequencies of its various points, corresponding 
to the baseline DF.  Condition change is established by comparing the baseline DFs to subsequent test-
case DFs via new, phase space dissimilarity measures (PSDM), namely the L1 distance and χ2 statistic 
between two DFs. A clear trend in the dissimilarity measures over time indicates substantial departure 
from the baseline dynamics, thus signaling condition change. The severity of this departure can be 
interpreted as a "normal" fluctuation, abnormal behavior, impending failure, or complete breakdown.   

 
We illustrate the new approach on an assortment of machinery and biomedical examples. The 

machine data were collected from laboratory tests of various industrial equipment for diverse failure 
modes via seeded faults and accelerated failures. The biomedical applications involve detection of 
physiological changes, such as epileptic seizures from EEG; ventricular fibrillation fainting, and sepsis 
onset from ECG; and breathing difficulty from chest sounds. The PSDM show a consistent 
discrimination of normal-to-abnormal transitions, allowing earlier, more accurate, and more robust 
detection of the dynamical change for all of these applications in comparison to TNM.   
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I. INTRODUCTION 

 
Response to an abnormal event (e.g., condition-based or predictive maintenance of machines, and 

treatment of a patient) relies heavily on analysis of noisy data. The major roadblocks to accurate, 
timely, and robust prognostication include [1]: (a) incomplete understanding of event evolution to the 
abnormal state; (b) lack of predictive methodologies for unsteady signatures; (c) ignorance about 
controlling parameters; and (d) unavailability of test facilities to emulate a real, operational industrial 
environment or inappropriateness of such tests in humans. Our present approach is far from proposing 
a complete and universally applicable solution to this problem, but does offer a partial solution.  In 
particular, we address items (a)-(b) by quantifying the (non-stationary) condition change as a sequence 
of nonlinear statistical signatures; item (c) by associating change in the controlling parameter with the 
response of the equipment or biomedical process; and item (d) by tests that resemble in-plant 
operations or use of real physiological data for the biomedical endpoint.   
 

Machine dynamics [2-27] has a long history [11]. Metal cutting forces during machine tool chatter 
have long been recognized as “very complex” and “very far from sinusoidal,” implying nonlinear 
dynamics [23]. Tlusty[12, 18-20] published extensive experimental (in)stability diagrams for turning, 
milling, boring, hobbing, and planing. Qu et al. [16] used nonlinear measures to diagnose dynamics, 
using vibration data from rotating machinery (turbo-generator and compressor). Bukkapatnam et al. [3] 
analyzed data from lathe cutting and found low dimensional, chaotic features. Our previous work 
focused on the nonlinear dynamics of machine tool chatter [28, 29], and used phase-space (PS) 
dissimilarity to detect condition change in various physical processes, namely: distinguishing different 
drilling conditions (tool wear) from spindle motor current of a machining center; distinguishing 
(un)balanced centrifugal pump states from electrical motor power; and forewarning of a bellows 
coupling failure in a rotating drive train from motor current. [30] Our more recent work used phase-
space dissimilarity to determine condition change in machines due to seeded faults and accelerated 
failure progression [31-33]. Delogu, Rustici, and coworkers found hyperchaos [34] and intermittent 
chaos [35] in ball milling. Pfeiffer’s analysis [36] showed that bifurcations and chaos may be generated 
by various mechanical processes, such as stick-slip due to dynamic/static friction and surface impacts; 
additional processes include surface deformation and material removal/wear [12, 18, 20].  

 
Characterization of change in physiological processes is even more vexing, displaying the same 

confounding features of non-stationarity, nonlinearity, multiple time scales, and strong sensitivity to 
environmental perturbations, with the added challenge of the enormous complexity of a living 
organism.  As an illustration of the status of biomedical prognostics, we shall briefly describe recent 
work on prediction of epileptic events. Early work on prediction of epileptic seizures began in the 
1970s [37], expanding rapidly over the last decade, due to digital electroencephalographic (EEG) 
technology and advances in nonlinear dynamics [38-44]. Babloyantz and Destexhe [45], and 
Babloyantz [46] suggested that EEG data have noisy deterministic features that produce diverse 
behaviors, including chaos, although some investigators have challenged this idea [47-49]. Recently, 
the Journal of Clinical Neurophysiology published a recent focus issue (May 2001) on epilepsy 
prediction [50-55]. Litt and Echauz [56] reviewed this research in May 2002, including time- and 
frequency-domain analysis, nonlinear dynamics and chaos, as well as neural networks and other 
artificial intelligence approaches. IEEE Transactions on Biomedical Engineering published a focus 
issue (May 2003) on prediction of epilepsy [57-68]. Typical measures for prediction include the largest 
Lyapunov exponent [61], synchrony [57], correlation integral [65], and various time- and frequency-
domain features of EEG energy [58]. These results are mostly based on analysis of intracranial EEG.  

To date, most of the effort on condition change assessment and forewarning has focused on Fourier 
spectra, conventional statistical measures (CSM), and traditional nonlinear measures (TNM), such as 
Kolmogorov entropy, correlation dimension, and Lyapunov exponents. While these descriptors 
discriminate adequately between clear-cut regular and chaotic dynamics, they are not always 
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sufficiently sensitive to distinguish between slightly different chaotic regimes, especially when data are 
limited and/or noisy.  This lack of discrimination arises from averaging over the global dynamics, 
which erases most of the dynamical details.  Indeed, our initial analysis of machine data [28] and EEG 
data [69] used TNM, yielding inconsistent detection and event forewarning. Those results indicated 
that detection of meaningful information in attenuated, noisy, artifact-infested signals requires more 
sensitive and discriminating measures.  

 
We addressed these limitations by defining new measures to quantify change in time-serial data, 

which are converted to a discrete geometric (phase space) representation. A distribution function 
describes the visitation frequency and sequence of the discrete phase-space states; (un)changing 
dynamics lead to an (un)altered distribution function. Dissimilarity measures quantify change between 
test case and baseline DFs. Large dissimilarity means that the system is far from the baseline, as a 
forewarning of an abnormal, possibly catastrophic event. A comparison of the results shows a 
significant and consistent superiority of the new measures over the TNM for detection and forewarning 
of condition change in both machinery and  physiological data.  Indeed, the PSDM have consistently 
better sensitivity and discrimination power for event forewarning than TNM for machines [70] and 
biomedical data [71]. 

 
The remainder of this paper is organized as follows.  In Section II we review briefly the traditional 

statistical and nonlinear measures used to characterize change in time serial data. We then present our 
methodology and the associated PSDM including a recently developed [32] statistical test for failure 
forewarning and onset. Section III and IV present our results for various machine and physiological 
data, respectively. Section V summaries the results and presents our conclusions. 

 
II. APPROACH 
 
Machine processes display rich dynamics, including quasi-periodicity, nonlinearity, and occasional 

chaos.  To carry out the analysis, we assume that: (i) the underlying dynamics are essentially 
deterministic; (ii) the processes behave as a low-dimensional nonlinear, possibly chaotic dynamical 
system; (iii) a single channel of data can capture the main features of nonlinear dynamics. Phase-space 
reconstruction of multi-channel data is also possible.  Preliminary results [72] support the assumption 
that multi-channel data provide more robust forewarning than single channel data.  A thorough 
investigation of these aspects will be pursued in the future. 

 
Several practical caveats are related to the amount of data and its quality. For example, an 

insufficient amount of time-serial data may not adequately sample the attractor, thereby degrading the 
sensitivity of the dissimilarity measures [73, 74]. Likewise, the data sampling rate, fs, must be much 
larger than the machine dynamical rate, ν, which in turn must be much larger when compared to the 
inverse of the time, T, to failure: fs >> ν >> 1/T.  We assure the validity of this assumption by requiring 
that the first minimum in the mutual information function occur at four (or more) time steps. Usually, 
the analysis is confounded by artifacts in the data. Based on a priori information about the underlying 
dynamics, we remove such artifacts (e.g., sinusoidal variation in three-phase electrical power, resonant 
oscillations in vibration power, low-frequency, muscular activity in physiological data from eye-blinks 
and breathing). Also, parameters for the phase-space reconstruction must be chosen carefully for 
robust and sensitive indication of condition change. This part of the methodology is still quite analyst-
intensive; practical (analyst independent) prognostication must be less dependent on interaction with or 
guidance from the human expert. Moreover, the applicability of the present methodology has been 
limited to retrospective analysis of archival data for seeded faults, accelerated failures, and biomedical 
events which are well characterized under appropriate test conditions.  The separation between the 
present state of our methodology and the real-world needs is still large and will require substantial 
additional development, since practical applications will definitely require prospective analysis of 
(near-)real-time data. 

 
The general approach is outlined next. We first acquire a process-indicative scalar signal, e, which 

is sampled at equal time intervals, τ, starting at an initial time, t0, yielding a time-serial sequence of N 
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points, ei = e(t0 + iτ). We remove artifacts from the data with a zero-phase quadratic filter [69, 75, 76] 
that performs better than conventional filters. This filter uses a moving window of 2w+1 points of data, 
with the same number of data points, w, on either side of a central point. We fit a parabola in the least-
squares sense to these data points, and use the central point of the fit to estimate the low-frequency 
artifact, fi. The residual (artifact-filtered) signal, gi = ei – fi, has essentially no low-frequency artifact 
activity. All subsequent analysis uses this artifact-filtered data, gi. 

 
We convert each artifact-filtered value, gi, into a symbolized value, si, namely one of S different 

integers, 0,1, .  .  .  , S – 1. Equiprobable symbols are formed by ordering all N of the base case artifact-
filtered time-serial data points from the smallest to largest value. The first N/S of these ordered values 
correspond to the first symbol, 0. Ordered data values (N/S) + 1 through 2N/S correspond to the second 
symbol, 1, and so on. Equiprobable symbols have non-uniform partitions in the signal amplitude with 
the same occurrence frequency of gi values by construction, and thus have no information about the PS 
structure. In contrast, symbols with uniform partitions (uniform symbols) have inherent dynamical 
structure before beginning the PS reconstruction. Thus, one advantage of equiprobable symbols is that 
dynamical structure arises only from the PS reconstruction, as described below. Moreover, large 
negative and large positive values of gi have little effect on equiprobable symbolization, but 
dramatically change the partitions for uniform symbols. Information theoretic measures of the PS-DF 
(e.g., mutual information function) are smooth functions of the reconstruction parameters for 
equiprobable symbols, but are noisy functions of these same parameters for uniform symbols. Thus, in 
general, equiprobable symbols provide better discrimination of condition change than uniform 
symbols. 

 
II.1 Conventional Statistical Measures (CSM) 
 
CSM have long been used for general characterization. The most common statistical measures are 

the mean: g  = Σi gi/N, where the sum over i, Σi, spans all N of the points in the analysis window, and 
the sample standard deviation, σ, which is defined as: σ2 = Σi (gi – g )2/(N – 1).  Higher moments about 
the mean include skewness: s = Σi (gi – g )3/Nσ3, and kurtosis, k = Σi (gi – g )4/Nσ4 – 3. A large 
positive (negative) value of skewness corresponds to a longer, fatter tail in the distribution about the 
mean to the right (left). Kurtosis measures the amount of flattening (k < 0) or excess peakedness (k >0) 
about the mean. Another measure is the average number of time steps per wave cycle (frequently used 
in engineering analysis of sampled data): m = N/[(nc – 1)/2] ≈ 2N/nc, for nc >>1  Here, nc is the average 
number of mean crossings, and two successive mean crossings delimit one-half of a wave period. The 
first zero in autocorrelation function defined by A(j) = Σi (gi – g )(gi+j  – g ) / (N – j)σ2, is also a useful 
measure. While CSM are useful in the analysis of linear processes, they provide inconsistent 
discrimination for detection of condition change in nonlinear systems. We include them here for 
completeness and comparison. 

 
II.2 Traditional Nonlinear Measures (TNM) 
 
The advent and rapid development of nonlinear and chaotic dynamics over the last few decades has 

produced new and powerful measures for characterization via PS reconstruction [39, 42, 43], which 
uses time-delay vectors that are formed from the (symbolized) si-data, y(i) = [si, si+λ , . . . , si+ (d–1)λ]. 
The choice of lag, λ, and embedding dimension, d, determines how well the PS reconstruction unfolds 
the dynamics. Too high an embedding dimension could result in overfitting of real data with finite 
length and noise. Moreover, different observables of a system contain unequal amounts of dynamical 
information [77], implying that PS reconstruction could be easier from one variable, but more difficult 
or impossible from another. Our analysis seeks to balance these caveats for finite-length noisy data. 

 
We use the term, “traditional nonlinear measures” (TNM), as distinct from the phase-space 

measures in the next subsection. We choose three of the most-frequently-used TNM, as potential 
indicators of dissimilarity, namely: (i) the first minimum in the mutual information function as a 
nonlinear measure of decorrelation time, (ii) the correlation dimension as a measure of complexity, and 
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(iii) the Kolmogorov entropy as a measure of predictability. We describe these measures next, with 
more detailed definitions and characterizations in the references cited below. 

 
The mutual information function (MIF) measures average bits of information that can be inferred 

from one measurement about a second, as a function of the time delay between the two signals. 
Shannon and Weaver [78] developed the MIF, which was later applied to time series. [79] The first 
minimum in the MIF, M1, is an average de-correlation time. The MIF is: I(q, r) = I(r, q) = H(q) + H(r) 
– H(r, q), where H is entropy: H(q) = –Σi P(qi) log2[P(qi)] and H(q, r) = –Σi P(qi, r j) log2[P(qi, r j)]. One 
set of signals is Q = {q1, q2, .  .  , qN},  with associated occurrence probabilities, P(q1), P(q2), .  .  .  , 
P(qN). A second set of measurements is R = {r1,

 r2, .  .  .  , rN}, with a time delay relative to Q, and with 
occurrence probabilities P(r1), …. , P(rN). P(qi, r j) is the joint probability that both states occur together. 

  
The maximum-likelihood correlation dimension [80, 81] is: D = –M{ Σij ln[(δij/δ0 – δn/δ0)/(1 – 

δn/δ0)]}
-1, where M is the number of randomly-sampled pairs of phase-space points. The maximum-

norm distance between PS-point pairs, i and j, is δij = max(0≤ k ≤ m–1) |gi+k – gj+k|, where m is the 
average number of data points per cycle, as defined above. The distance δn is the scale length that is 
associated with noise. Distances are normalized with respect to a nominal scale length, δ0, as a balance 
between sensitivity to local dynamics (typically at δ0

 ≤ 5a) and avoidance of excessive noise (typically 
at δ0

 
≥ a). The symbol a denotes the absolute average deviation as an indicator of variability [81], a = 

Σi |gi – g |/N. 
 
The Kolmogorov entropy (K-entropy), K, is the rate of information loss per unit time (bits per 

second), and is the sum of the positive Lyapunov exponents. Positive, finite K is generally viewed as a 
clear indication that the process manifests chaotic dynamics. Extremely large entropy values indicate a 
stochastic (totally unpredictable) phenomenon. K is estimated from the average number of time steps, 
bi, for two PS points, initially within δ ≤ δ0, to diverge to δ  > δ 

0. We use the maximum-likelihood 
form of Schouten et al. [81], K = –fs log(1 – 1/b), with b = Σi bi/M for M point pairs. The data-sampling 
rate is fs. 

 
TNM capture nonlinear dynamical features, but do not offer a very sensitive tool for detection of 

dynamical change. The main reason is that TNM, like CSM, are expressed as a sum (or integral) over 
(a region of) the PS, which averages all dynamical details into one number. Consequently, two (very) 
different dynamical regimes may lead to very close, or even equal measures. Moreover, the usual 
definitions of K-entropy and correlation dimension are in the limit of zero scale length. However, all 
real data have noise, and even noiseless model data is limited by the finite precision computations. 
Thus, we use a finite length scale that is larger than the noise (δ0 = 2a), at which to report the values of 
K and D. Consequently, our values of K and D do not capture dynamical complexity at length scales 
smaller than δ0 and have smaller values than expected for the zero-scale-length limit (δ0 → 0). 

 
II.3 Phase-Space Dissimilarity Measures 
 
We addressed some of the limitations of CSM and TNM as discriminators of condition change by 

introducing phase-space dissimilarity measures (PSDM), [30-33] which we review briefly for the 
reader’s convenience. The time-delay reconstruction of the symbolized data (as discussed above) 
partitions the phase-space (PS) into Sd hypercubes or bins. By counting the number of PS points that 
occur in each bin, we obtain the distribution function (DF) as a discretized density on the attractor. We 
denote the population of the jth DF bin, Rj, for the base case (nominal state), and Sj for a test case (off-
normal state), respectively. Comparison of the test case to the base case involves measuring the 
difference between Rj with Sj by the χ2 statistic and L1 distance:  

 
( ) ( )∑ +−=

j
jjjj SRSR ,/22χ                (1) 

∑ −=
j

jj SRL .                   (2) 
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The summations in Eqs. (1) - (2) run over all of the populated PS cells. The χ2 statistic is one of the 
most powerful, robust, and widely used tests for dissimilarity between two DFs. This χ2 is not an 
unbiased statistic for accepting or rejecting a null statistical hypothesis but rather is a relative measure 
[76] of dissimilarity between the two DFs. The L1 distance is the natural metric for DFs by its direct 
relation to the total invariant measure on the attractor. These measures account for changes in the 
geometry and visitation frequency of the attractor. Consistent calculation obviously requires the same 
number of points in both the base case and test case DFs, identically sampled; otherwise the 
distribution functions must be properly rescaled. 

 
The accuracy and sensitivity of the PS reconstruction can be enhanced by connecting successive PS 

points as prescribed by the underlying dynamics, y(i) → y(i + 1). Thus, we obtain a discrete 
representation of the process flow Y(i) = [y(i), y(i + 1)] that is formed by adjoining two successive 
vectors from the d-dimensional reconstructed PS. Y(i) is a 2d-dimensional, connected-phase-space 
(CPS) vector. As before, R and S denote the CPS DFs for the base case and test case, respectively.  We 
then define the measures of dissimilarity between these two CPS DFs via the L1-distance and χ2 

statistic, as before [73, 74, 82-84]: 
( ) ( )∑ +−=

jk
jkjkjkjkc SRSR ,/22χ               (3) 

∑ −=
jk

jkjkc SRL .                 (4) 

The subscript c denotes CPS measures; the subscripts, j and k, denote the initial, y(i), and final, 
y(i+1), PS states, respectively. The value λ = 1 results in d – 1 components of y(i + 1) being redundant 
with those of y(i); we allow this redundancy to accommodate other data such as discrete points from 
two-dimensional maps. CPS measures have higher discriminating power than their non-connected 
counterparts. Indeed, one can prove [73] that these measures satisfy the inequalities: χ2 ≤ L, χc

2 ≤ Lc, L 
≤ Lc, and χ2 ≤ χc

2. 
 
We call the quantities in Eqs. (1) – (4), phase space dissimilarity measures (PSDM). Their 

definitions allow PSDM to flag transitions between regular and chaotic regimes, but also to 
discriminate well between different chaotic regimes. While straightforward methods exist [39, 42, 85] 

for discriminating between regular and chaotic motion, or for detecting the transition between these 
regimes, discriminating between close chaotic regimes (e.g., Lyapunov exponents, Kolmogorov 
entropy, correlation dimension, etc. [42, 43]). is almost impossible. The reason for the superior 
performance of PSDM is rather simple: TNM use a difference of averages, while PSDM use sums of 
the absolute value of differences. 

 
 The disparate range and variability of the PSDM make their interpretation and comparison rather 

difficult, especially for noisy data. We obtain a consistent means of comparison via renormalized 
dissimilarity measures (RDM) [73, 74], by proceeding as follows.   If  V denotes a dissimilarity 
measure from the set, V = {L, Lc, χ2, and χc

2}, we obtain the mean value,V , of the dissimilarity 
measure by comparison among the B(B–1)/2 unique combinations of the B base case cutsets, with a 
corresponding sample standard deviation σ1. We subsequently compare each non-overlapping test case 
cutset to each of the B base case cutsets, and obtain the corresponding average dissimilarity value, Vi, 
of the ith cutset for each dissimilarity measure.  The RDM of the measure V is defined as the number 
of standard deviations that the test case deviates from the base case mean, U(V) = |Vi – V |/σ1. A 
statistically significant trend in the RDM indicates abnormal dynamics for event forewarning.  

 
The best choice of the parameter set, {N, w, S, d, B, λ}, depends not only on the system, but also on 

the specific data. We choose a “reasonable” value for the number, B, of base case cutsets, 5 ≤ B ≤ 10, 
as a balance between a reasonably short quasi-stationary period of “normal” dynamics and a 
sufficiently long period for statistical significance. We find that timely forewarning is obscured by a  
value for N that is too large, while inadequate statistical sampling of the attractor occurs if N is too 
small.. Our analysis proceeds as follows: (a) choose the parameter set, {N, w, S, d, λ}; (b) compute the 
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renormalized PS dissimilarities for the specific data; and (c) systematically search over the parameters 
{ N, w, S, d, λ}, to find the best forewarning indication.  

 
Our previous work [30-33] found that RDM are sensitive measures of condition change, but that 

further improvements are needed to give an explicit indication of machine failure. Thus, we seek a 
more robust and specific end-of-life (EOL) forewarning. Extensive application of the PSDM approach 
[32, 33] shows that all four of the PSDM display similar trends, as illustrated by the analysis of the 
machine data below. This observation suggests the definition of a composite measure, Ci, as the sum of 
the four renormalized PSDM for the i-th dataset: 

 
Ci = U(χ2) + U(χc

2) + U(L) + U(Lc).             (5) 
 
This composite measure is expected to be more robust than any one of the PSDM, while accurately 

indicating condition change. The EOL indication from this composite measure is then quantified as 
follows. We use contiguous, non-overlapping windows of Ci to obtain a least-squares straight-line fit: 

 
 yi = ai + b.                   (6) 
 
The window length of n = 10 values of Ci (and yi below) is chosen consistent with the number of 

cutsets in each snapshot (B = 10). Other values of B give inferior indication of condition change. Next, 
the variance, σ2

2, measures the variability of the Ci values about this straight-line fit: 
 
 σ2

2 = Σi (yi – Ci)
2/(n-1).               (7) 

 
G measures the variability of next n values of Ci about an extrapolation of this straight-line fit: 

 
 G = Σi (yi – Ci)

2/σ2
2.                (8) 

 
Other fits (quadratic, cubic, and quartic) extrapolate poorly outside the fitting window.  

 
The index, i, in Eqs. (6) – (8) runs over the B values of Ci and yi.  The quantity G is similar to a chi-

squared statistic, but we do not use that notation to avoid confusion with the two χ2 PSDM. A 
statistical test for G would involve (for example) the null hypothesis that deviations from the straight-
line fit are normally distributed. Analysis of accelerated machine-test data uses Eqs. (5) – (8) to extract 
both forewarning and an indication of failure onset. We present the results of this analysis next. 
 

III. APPLICATION TO MACHINE DATA 
 
Without a model, the “correct” choice of process-indicative data can be justified only a posteriori. 

As a practical matter, this choice is limited to measurable process variables. Moreover, the analyst’s 
choice must recognize that not all observables capture the same amount of information [77]. Typical 
data encountered in machine/industrial applications are tri-axial acceleration,a

r
, and three-phase 

electrical current, I i, and voltage, Vi. From these data, we calculate the instantaneous mechanical 
(vibration) or electrical power, P ∝ a

r ⋅ ∫ a
r
 dt or Σi I iVi, respectively. The use of vibration or electrical 

power is certainly not unique. Indeed, one component of acceleration (or current or voltage) may 
provide an adequate process-indicative signal to extract condition change. The use of power has the 
advantage that only one channel of data is analyzed, rather than analysis of several channels (e.g., three 
channels of acceleration, or six of I i and Vi) to find the best signal for change discrimination. This 
paper presents details of the forewarning analysis via vibration power. Analyses of three-phase 
electrical power, and individual channels of current, voltage, acceleration, velocity, and torque are 
described in Refs. 31 and 33. 

 
For this analysis, the datasets for each test in the sequence were concatenated into a single long 

dataset. We verify data quality by checking for: the proper number of data points, any intervals with 
unchanged signal amplitude, adequate sampling rate, excessive periodic content, excessive noise, 
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saturation at high or low limits as an indicator of improper data scaling, and consistent signal 
amplitude across datasets in the test sequence. Subsequent analysis uses only data that pass these 
quality tests.  

 
The Electric Power Research Institute (EPRI) sponsored work on predictive maintenance for large 

motors, simulating common failures via seeded faults. [86] Present analyses use tri-axial (vibration) 
acceleration data from the inboard (IB) motor location, because all data from the outboard motor 
location failed the quality check. Data were recorded in 1.5-second snap-shots at 40 kHz (60,000 
points per dataset). Our analysis averages the measures over five subsets (B = 5) of 12,000-points. 

 
III.1 EPRI Air-Gap Seeded Fault 
 
One EPRI test [86] involved operator-imposed air-gap offsets in the rotor-stator alignment. The test 

bed was a three-phase, 800-HP sleeve-bearing, form-wound Allis Chalmers induction motor, rated at  
4160 volts and 100 amps at 60 Hz with 10 poles, 94 copper rotor bars, 40 stator slots, running at a 
normal speed of 710 RPM. The first dataset of test sequence involves the motor running in its nominal 
state. Two different air-gap offset seeded faults were then imposed via preinstalled jackscrews. The 
second dataset imposed a static inboard air-gap offset of 8 mils from the nominal value of 30 mils. The 
third dataset retained the first fault, and added a static outboard air-gap offset by 20% in the opposite 
direction from the inboard shift, resulting in the rotor being skewed relative to the stator. Figure 1a 
shows a 20-millisecond segment of vibration power data with complex, nonlinear features. The 
corresponding statistical measures (Figs. 1b-1e) and traditional nonlinear measures (Figs. 1e-1g) do not 
provide a clear indication of the increasing severity of the seeded fault. Figure 2 shows that all four 
phase-space dissimilarity measures rise linearly with increasing fault severity, yielding good change 
discrimination.  

 
III.2 EPRI Rotor-Bar Seeded Fault 
 
A second EPRI [86] test involved operator-imposed partial or total cuts in the rotor bars. The test 

bed was the same Allis Chalmers motor, as in Sec. III.1. The test sequence began with the motor 
running in its nominal state (first dataset), followed by progressively more severe broken rotor bars. 
The second dataset involved one rotor bar cross section cut 50% in half at the 11 o’clock position. The 
third dataset was for the same rotor bar now cut through 100%. The fourth dataset was for a second 
rotor bar cut 100% at the 5 o’clock position, exactly 180° from, in addition to the first rotor failure. 
The fifth dataset was for two additional rotor bars cut adjacent to the original 11 o’clock bar, with one 
bar cut on each side of the original, yielding four bars completely open. The complete test sequence 
then captured an exponentially growing fault, from nominal operation, to ½, to 1, to 2, to 4 broken 
rotors bars. Figure 3a shows a 20-millisecond segment of vibration power data with complex, 
nonlinear features. The corresponding statistical measures (Figs. 3b-3e) and traditional nonlinear 
measures (Figs. 3e-3g) do not provide a clear indication of the exponentially-growing severity of the 
seeded fault. Figure 4 shows that all four phase-space dissimilarity measures rise linearly with the 
increasing fault severity, thus yielding good change discrimination. 

 
III.3 Analysis of Turn-to-Turn-Short Seeded Fault Data  
 
A third EPRI test [86] involved operator-imposed turn-to-turn shorts in a motor. The test bed was a 

three-phase, 500-HP, sleeve-bearing, form-wound General Electric induction motor, rated for 4,000 
volts at 60 Hz, with 84 rectangular copper rotor bars, 6 poles, and 108 stator slots, running at a nominal 
speed of 1,185 RPM. The first dataset was from the motor, running in its nominal state. A second 
dataset involved a turn-to-turn (2.70-ohm) short by installing a large screw between two turns. A third 
dataset involved a more severe turn-to-turn (1.35-ohm) short by installing a smaller screw between two 
turns. The analysis sequence goes from largest turn-to-turn resistance (infinite resistance, 
corresponding to no short), to smaller (2.7 ohms), to smallest (1.35 ohms), corresponding to increasing 
severity in the fault. Figure 5a shows a 20-millisecond segment of vibration power data with complex, 
nonlinear features. The corresponding statistical measures (Figs. 5b-5e) and traditional nonlinear 
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measures (Figs. 5e-5g) show some consistency with the increasing severity of the seeded fault. The 
minimum (PN) rises and maximum (PX) falls (Fig. 5b) monotonically over the test sequence. Kurtosis 
decreases and skewness increases monotonically (Fig. 5c) over the test sequence. Linear increases 
occur in the average number of time steps per cycle (Fig. 5d) over a very narrow range (7.2-7.6), and 
the first zero in the autocorrelation function (Fig. 5e).  Figure 6 shows that all four phase-space 
dissimilarity measures rise linearly with the increasing fault severity, thus yielding good change 
discrimination. 

 
III.4 Analysis of Gear-Failure Acceleration Data 
 
The Pennsylvania State University (PSU) operates the Applied Research Laboratory [87], 

including the Mechanical Diagnostics Test Bed (MDTB). A 30-HP, 1750-RPM, alternating current 
(AC), electric motor drives a gearbox, which is loaded by a 75-HP, 1750-RPM AC (absorption) motor. 
A digital vector drive unit controls the current to the absorption motor for torque variation up to 225 ft-
lbs. The MDTB can test gear ratios from 1.2:1 to 6:1 in the 5-20 HP range at 2 to 5 times the rated 
torque of single and double reduction industrial gearboxes. The motors and gearbox are mounted and 
aligned on a bedplate, which is mounted on isolation feet to prevent vibration transmission to the floor. 
The shafts are connected with both flexible and rigid couplings. Torque limiting clutches on both sides 
of the gearbox prevent transmission of excessive torque during a gear jam or bearing seizure. Torque 
cells on both sides of the gearbox directly monitor the loads. The protocol for this accelerated failure 
test involves a break-in period at the nominal (1X) load (530 ft-lbs) for one hour, followed by twice 
(2X) or three times (3X) the normal load, as shown in Table 1 for Run #36, which also includes the 
time to failure (Tfail). The EOL failures typically include pinion damage, broken teeth, and a sheared 
shaft. Ten-second snapshots of tri-axial accelerometer data were sampled at 52 kHz; see Table 1 for the 
interval (∆τ) between each snapshot. We convert the accelerometer data during the overload period 
into vibration power for this analysis. As before, the CSM and TNM show little if any failure 
forewarning,34 so we do not show them here.  

 
Figure 7 shows that all four PSDM rise systematically (Figs. 7a - 7d) to provide failure 

forewarning. Indeed, the abrupt increase in all four PSDM at 160 hours clearly forewarns of the 
imminent failure. We obtain this forewarning by quantifying significant deviations from the general 
trend via application of Eqs. (5) - (8). Chi-squared statistical tables give a value of G ≤ 28.5 for n = 10 
degrees of freedom with a probability of one out of the 650 snapshots or (1/650 ~ 1.5 x 10-3). However, 
we observe many instances of G>28.5 (solid curve in Fig. 7f), arising from dynamical correlations in 
the accelerometer data, thus violating the requirement for independent, identically distributed samples.  

 
Instead, we use G as a relative EOL measure. Although G varies erratically, we observe a 

systematic trend in the running maximum of G, Gmax, as shown by the dashed curve in Fig. 7f, 
neglecting (for example) the first six G-values to avoid startup transients. This running maximum 
steadily increases in modest increments to 376 over the first 159.75 hours of the test, while 
intermediate values of G fall well below the running maximum. Subsequently, a large increase occurs 
in Ci at 160 hours, which produces a correspondingly large rise in G, and therefore in Gmax. The 
resulting jumps in Gmax are quantified by the chain curve (-.-) in Fig. 7f, as the ratio of the current 
maximum in G, (Gmax)k, to the previous maximum in G, (Gmax)k-1, R = (Gmax)k/(Gmax)k-1. G rises to 2,493 
at 160 hours, with a corresponding ratio, R = 6.62, while the largest non-EOL ratio is R = 2.22 at 28.5 
hours. We find that the forewarning values of Ci across the various MDTB tests are not consistent, but 
that the values of Gmax and R consistently provide both forewarning of the failure and indication of the 
failure onset, as shown in Table 1: (a) the largest non-EOL value of R (RNEOL) and the corresponding 
value of G (GNEOL); (b) values of R (REOL) and G (GEOL) that indicate the end of life, and the matching 
time (TEOL/TFAIL); (c) the value of G at failure onset (GONSET) and the corresponding time (TONSET/TFAIL); 
and (d) the  failure-endpoint time (TFAIL).  

 
Table 1 also shows results for Runs #37-38. The corresponding plots [33] are very similar to Fig. 7 

and are not shown. Runs #36-38 have largest non-EOL values: RNEOL = 6.20 and GNEOL = 376. The 
smallest EOL values are: REOL = 6.62 and GEOL = 2,493. Thus, limits (for example) of R > 6.4 and G > 
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1,800 provide EOL forewarning. Moreover, we find that the largest EOL value of GEOL = 13,486, 
while the smallest failure-onset value is GONSET = 16,284. Thus, an intermediate value (for example) of 
G > 15,000 distinguishes the EOL from failure onset forewarning. This approach gives quantitative 
limits for transitions from nominal operation (green-light for “go” in a traffic signal metaphor), to 
forewarning of failure (yellow light for “caution”), and to failure onset (red-light for “stop”).  

 
MDTB Run #39 involves a different test protocol: a one-hour break-in period at nominal load (1X), 

followed by 2X load for two hours, after which the load alternates between 3X and 2X loads for ten 
and five minutes, respectively. Figures 8-9 show the Run #39 PSDM for the 2X and 3X overload, 
respectively. The sawtooth features in each of the subplots correspond to the transition between 2X and 
3X loads; the straight-line portion in Fig. 8 corresponds to the 2X segment in Fig. 9, and inversely. 
Run #39 seeks failure forewarning in the presence of load changes. Table 1 shows that the above limits 
for G and R also distinguish between the non-EOL (green) and EOL (yellow) states for the 3X-portion 
of this test, because the higher overload drives the failure. These limits do not apply to the 2X test, due 
to the reduced damage at the lower overload. Unsurprisingly, a different limit of G > 38,000 (for 
example) distinguishes between the EOL and failure onset forewarnings, due to the change in test 
protocol. The green-yellow-red approach still applies for this test. 

  
III.5 Analysis of Shaft-Crack Seeded Fault 
 
We analyzed additional PSU seeded-fault data with a progressively increasing depth of cut at the 

base of a motor-driven rotor blade. This test sequence simulates the growth of a crack in a turbo-
machine, which eventually causes failure. The rotor is driven at a fixed rotational speed by a fractional 
horsepower DC motor that was made by Bodine Electric Company, with typical electrical values of 4 
volts and 2 amps. Test data at each depth of cut were tri-axial accelerations in three orthogonal 
directions on one bearing pillow block. The sequence test states were: (a) nominal operation with no 
cut, (b) successively deeper cuts through one of eight equi-angularly-spaced 5/8”-diameter shafts that 
were fixed perpendicular to the rotation axis of the motor-driven rotor. The cut depths range from 
1/16” to 3/8”. Figure 10 shows a resultant segment of vibration power (Fig. 10a), along with 
conventional statistical measures (Figs 10b-10e), and traditional nonlinear measures (Fig. 10e – 10g). 
The magnitudes of minimum and maximum in vibration power (Fig. 10b) are constant, then rise 
abruptly for the deepest cut. The number of time steps per cycle (Fig. 10d) rises slowly and 
monotonically, also showing a large increase for the largest cut depth. None of the other measures in 
Fig. 10 show a consistent change over this test sequence. Figure 11 shows that all four PSDM rise 
monotonically by one-hundred-fold as the cut depth increases from zero (baseline) to 3/8”. These 
strong indications of change are in sharp contrast to the weak ones of Fig. 10. 

 
IV. APPLICATION TO PHYSIOLOGICAL DATA 
 
IV.1 Analysis of EEG Data 
 
We present five illustrations of our approach by comparing traditional nonlinear measures (D and 

K) with phase-space dissimilarity measures (χ
2 and L1). As discussed in Sect. II.3, direct comparison of 

these measures is difficult due to their disparate range, variability, and physical meaning. 
Consequently, renormalization of the PSDM allows meaningful comparison by defining Vi as the value 
of each indicator for the i-th cutset from the set, V = {D, K, χ2, and L}. The remainder of the RDM 
analysis remains the same as before. Dynamical states close to (far from) the baseline have small 
(large) values of the renormalized dissimilarity.  

 
Human electroencephalogram data were acquired during clinical epilepsy monitoring and analyzed 

by the procedure of Section II. Figure 12 shows typical results. Raw data in subplot (a) have very 
complex, non-periodic features that are typical of brain waves. The seizure event occurred at 110.7 
minutes, as denoted by the solid vertical line in subplots (d) and (e). No seizure event forewarning is 
provided by the correlation dimension in subplot (b), or by the Kolmogorov entropy in subplot (c). The 
isolated peaks at 42 and 58 minutes in subplot (c) are not significant. An  event forewarning of 27 



 12 

minutes is provided by U(χ2) in subplot (d) and U(L) in subplot (e), with two (or more) successive 
occurrences above the threshold of 5 (dashed horizontal line) at 85 minutes (vertical dashed line). 
Hively and Protopopescu (2003) give additional details of the methodology for this and subsequent 
examples. Our most recent results give a total true rate of 56/60 with up to 5 hours forewarning via 
analysis of two bipolar EEG scalp channels. [72] 

 
IV.2 Analysis of EKG Data for Ventricular Fibrillation 
 
Human electrocardiogram data were acquired during ambulatory monitoring. Figure 13 shows 

results for a ventricular fibrillation event at 37 minutes.  The raw data in subplot (a) show ten distinct 
heartbeats and their associated quasi-periodic (nonlinear) features. The correlation dimension in 
subplot (b) varies randomly (no forewarning features) with a rise at the fibrillation event. The 
Kolmogorov entropy in subplot (c) varies erratically; the isolated peaks occurring at 8 and 24 minutes 
are not valid forewarning indications. Event forewarning of 16 minutes (the vertical dashed line) is 
provided by both U(χ2) in subplot (d) and  U(L) in subplot (e); forewarning corresponds to two (or 
more) successive occurrences above the threshold  (dashed horizontal line). Similar results were 
obtained for several additional datasets. 

 
IV.3 Analysis of EKG Data for Syncope 
 
Human electrocardiogram data were acquired during laboratory tests of fainting (syncope), under 

the following protocol: (i) lying horizontal for 10 minutes, (ii) lying in tilted condition (70o from 
horizontal) for 40 minutes, and (iii) lying horizontal again for 5 minutes. Figure 14 (top) shows non-
syncopal results with low values of renormalized dissimilarity (~10) that increase very slowly and 
erratically over the tilt period (slope, A~0.06-0.07 per minute). Figure 14 (bottom) shows syncopal 
results for the same subject with much larger renormalized dissimilarity (40-70) that increase much 
more rapidly over the tilt period (A~0.8-1 per minute). The tilt period in this second test was 
terminated early when the subject fainted.  Similar results are obtained for a second subject. 

  
IV.4 Analysis of EKG Data for Sepsis 
 
Heart wave data were obtained via surface chest electrodes from anesthetized rats subjected to an 

induced sepsis experiment. After 55 minutes of normal-state recording, each test rat was exposed to 
inhaled bacterial endotoxin that induces an inflammatory response and eventually sepsis. Figure 15 
shows sample results. Raw data in subplot (a) have distinct heartbeats with additional quasi-periodic 
(nonlinear) features. No indication of condition change is displayed by either the correlation dimension 
in subplot (b), or by the Kolmogorov entropy in subplot (c). The condition change is shown clearly by 
both U(χ2) in  subplot  (d) and  U(L)  in subplot  (e), which remains low for the first 57 minutes, rising 
abruptly after the exposure onset, remaining high for the next 20 minutes, then decreasing slowly as 
the immune response fought off the bioagent effects. This recovery response is consistent with other 
physiological observations during the test (not shown). The total true (negative) positive rate for 
(un)exposed animals is  (6/6) 17/17. 

 
IV.5 Analysis of Lung Sounds  
 
A surface stethoscope acquired lung sounds data during lung experiments on anesthetized pigs. The 

baseline state consisted of normal breathing. Subsequent test cases were obtained by injecting a 
controlled volume of air (in increments of 100 milliliters up to 1400 milliliters) in the space between 
the diaphragm and the lungs, making breathing increasingly more difficult. Figure 16 shows sample 
pneumothorax results. Raw lung sounds data in subplot (a) have very complex features, including 
quasi-periodic heartbeats that are superimposed on slow breath-cycle undulations. The correlation 
dimension in subplot (b) provides no clear indication of condition change. The Kolmogorov entropy in 
subplot (c) likewise varies erratically. Condition change is indicated by both U(χ2) in subplot (d) and 
U(L) in subplot (e); both rise to a plateau of 5 over 100-500 ml, then increase to values larger than 20 
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over 500-1300 ml thereby providing robust forewarning of the animal's death at 1400 ml. Similar 
results were obtained for a second animal. 

 
 
V. DISCUSSION and CONCLUSIONS 
 
We have developed a model-independent method to quantify condition change from complex, 

time-serial data. First, we use a novel zero-phase quadratic filter to remove confounding artifacts (such 
as sinusoidal periodicity from three-phase electrical signals, and eye-blinks or breathing from 
biomedical data). The artifact-filtered data are converted into a statistical distribution function that 
describes the visitation frequency and sequence of the dynamical states. Dissimilarity measures 
between baseline and test distribution functions (DFs) detect condition change by summing the 
absolute values of the differences between DFs. The methodology is quite general, and we illustrate its 
usefulness by quantifying change for a variety of machine and physiological events. Success for these 
diverse applications provides confidence that this approach is useful for detecting condition change in 
nonlinear and chaotic processes for both machine and biomedical applications. 

 
Examples of machine failure forewarning include: detecting balanced and unbalanced centrifugal 

pump conditions from motor power; [30] distinguishing different drilling conditions from spindle 
motor current of a machining center; [30] and predicting failure of a bellows coupling in a rotating 
drive train from motor current; [88] discerning the difference in micro-cantilever vibrations with and 
without mercury on the sensor; forewarning of failure in electrical motors (Figs. 1-6) from vibration 
power and motor power; [33] and forewarning of failure in motor-driven components from vibration 
power (Figs. 7-11) and motor power. [33] Table 2 summarizes recent results for forewarning of seeded 
faults and accelerated failures in various machines and equipment. We compare conventional statistical 
measures (CSM), traditional nonlinear measures (TNM), and phase-space dissimilarity measures 
(PSDM) as indicators of condition change. CSM include minimum, maximum, average, sample 
standard deviation, skewness, kurtosis, average time steps per cycle, and first zero in the auto-
correlation function. TNM include first minimum in the mutual information function as a measure of 
decorrelation time, correlation dimension as a measure of complexity, and Kolmogorov entropy as a 
measure of information loss rate. PSDM are the χ2 statistic and L1 distance between the time-delayed 
reconstructions of the PS-distribution functions on the discretized attractor. PSDM show more 
consistent and better discriminating power for timely forewarning of failure or abnormal conditions, 
than either CSM or TNM. The reason for the improved performance of PSDM is rather simple. CSM 
and TNM compare averages, while PSDM are the sum over the absolute difference between the two 
phase-space states. In addition, the enhanced discrimination facilitates use of PSDM on noisier data.  

 
Examples of physiological-event forewarning include: brain waves for forewarning of epileptic 

events (Fig. 12); heart waves for forewarning of ventricular fibrillation (Fig. 13), and for detection of 
syncope (Fig. 14) and sepsis (Fig. 15); and lung sounds for detection of breathing difficulty (Fig. 16). 
The dissimilarity measures have small values in the normal state, followed by significantly larger 
values above a “normality threshold,” indicating abnormal dynamics. The results show that the phase-
space dissimilarity approach is sensitive, robust, and timely. PSDM show consistently better 
forewarning than either CSM or TNM for physiological applications. 

 
We now have high-fidelity laboratory integration of the technology elements into desktop-

computer software that analyzes noisy, archival data and provides indication of condition change. The 
analysis is much faster than real-time (e.g., less than 12 hours of CPU time on a P4 desktop computer 
to analyze 261 hours of 19-channel EEG data),[60] and can handle multiple channels.[72]  

 
We deem these results as encouraging and worthy of continuing development despite several 

limitations, which we discuss next. First, we use all of the data as a training set, limiting the strength of 
our conclusions. However, the alternative would involve equally-sized training and test sets. The 
resultant training (and test) sets would result in inadequate statistics. Second, we analyze both the 
machine and physiologic data from controlled tests, rather than an uncontrolled, real-world 
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environment. Third, our results depend on careful adjustment of the analysis parameters for the best 
total-true rate. Fourth, we analyze only physician-selected portions of the EEG data, rather than the full 
monitoring period. Fifth, these results are for only a limited number of datasets (e.g., a total of sixty 
EEG datasets, forty with epileptic events for a single seizure type, temporal lobe epilepsy). Much more 
data (hundreds of datasets) are needed for the proper choice of the analysis parameters as part of a 
robust and conclusive statistical validation. These data requirements are far beyond our present 
capabilities, and almost everyone else’s, based on present publications. Sixth, we have not performed 
prospective analysis of long-term continuous data, which is the acid test for any predictive approach. 
Seventh, the present analyst-intensive methodology uses retrospective analysis of archival data on a 
desktop computer. Real-world forewarning requires analyst-independent, prospective analysis of real-
time data on a portable device. Clearly, much work remains to address these issues. Thus, we view the 
importance of this work as examples of the overall potential of the methodology, rather than the 
specific results. 

 
Finally, we note the recent implementation of the PSDM analysis on a hand-held device [89] 

(personal digital assistant), which is much more appropriate for real-world use. This success provides a 
portable monitor for many new directions for future research and development. Moreover, an advanced 
monitor might include a mobile phone and global-positioning system to call responders automatically 
to the event location. These developments would allow (for example) failure forewarning in critical 
equipment (e.g., motors and motor driven components) at industrial and remote locations (e.g., motor-
driven turbine-generator at a natural gas pumping station). Many potential biomedical applications 
exist: epilepsy diagnosis, pre-surgical monitoring, out-patient ambulatory forewarning, monitoring for 
drug trial efficacy, use in conjunction with function imaging (e.g., fMRI), and use in conjunction with 
Vagal nerve simulation for seizure control; stoke detection via EEG and ECG in high-risk individuals; 
early diagnosis of Parkinson’s disease and other brain disorders; diagnosis of CNS pathologies via 
analysis of sensory-evoked potential changes in EEG; diagnosis of head trauma via EEG changes; 
hands-free computer control via removal of confounding artifacts (e.g., eye-blink and other facial 
muscle activity) from scalp EEG; Cochlear-implant monitor via analysis of EEG and imposed sounds 
to evaluate the brain’s processing of signals if hearing is not restored; drug/chemical effects diagnosis 
via EEG changes; motion disorder management by EEG analysis for onset detection, followed by deep 
brain stimulation and/or trans-spinal drug infusion; detection of brain ischemia (loss of blood flow) 
during brain surgery; drowsiness monitor via extraction of eye-blinks (an indicator of sleepiness) from 
scalp EEG; fitness-for-duty monitor for key personnel in high stress situations via scalp EEG analysis; 
automated sleep staging of nighttime polysomnogram data in outpatients; daytime sleepiness monitor 
of ambulatory outpatients for a sleep disorders; cardiac diagnosis of ambulatory outpatients via ECG 
analysis on an advanced Holter monitor; forewarning of cardiac events in ambulatory outpatients; 
forewarning of cardiac events during transport by an emergency responder; fetal ECG monitor during 
labor and delivery; monitor for premature and newborn infants with an elevated risk for cardiovascular 
events or sudden infant death syndrome via ECG, EEG, and/or chest sounds; forewarning of heart 
valve failure via ECG or chest sounds; fainting (syncope) monitor via ECG analysis for susceptible 
patients; shock monitor via ECG/EEG analysis for trauma patients; forewarning of impending rapture 
of an abdominal aortic aneurism via analysis of ECG, abdominal sounds, and/or aortic stress-strain 
data; diagnosis of lung disorders via analysis of chest sounds; forewarning/detection of an asthma 
attack via chest-sounds; detection of excessive wear, infection, bone degeneration, and related 
abnormalities in patients with orthopedic implants via joint sounds and/or muscle activity; artificial-
heart monitor via analysis of chest sounds and/or electrical activity to adjust pumping effort for 
metabolic demand and forewarn of pump failure; continuous blood-glucose monitor via skin-mounted 
optical-sensor for automatic control of insulin infusion and/or other therapeutic agents; personal 
monitor for dementia-sufferers at home via multiple sensors (e.g., EEG, ECG, and chest sounds) to 
provide early detection of illness and/or forewarning of catastrophic health events, as above; monitor 
for nursing home and assisted-care residents via EEG, ECG, pulse oximetry, body temperature; soldier 
monitor via clothing-embedded sensors for battlefield assessment of the physiological state; and 
sports-fitness monitor via ECG and chest sounds to assess training results in terms of healthy 
variability. The possibilities are manifold for a suitably refined condition-change-indication device. 
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========================================================================= 

 
Table 1: Summary of MDTB Test Results70 

Run Over-
load 

∆∆∆∆ττττ 
min 

RNEOL GNEOL REOL GEOL TEOL 
TFAIL 

GONSET TONSET 
TFAIL 

TFAIL 
   hr. 

36 2X 15 2.22    376   6.62   2,493 0.985 244,655 0.998 162.50 
37 3X   1 1.79    333   8.07   2,690 0.956   16,284 0.996     8.55 
38 3X   1 6.20    374 11.71 13,486 0.938   48,379 0.990     4.02 
39 2X   1 2.32    853   3.89   5,231 0.980     5,231 0.980     8.60 
39 3X   1 2.88 1,151 29.03 33,415 0.972   44,552 0.994     8.60 

 
 
 

                      Table 2: Summary of Recent Machine Failure Forewarning Results     
Data Provider   Equipment and Type of Failure    Diagnostic Data  Reference  
1) EPRI (S)   800-HP electric motor: air-gap offset   motor power   32 
2) EPRI (S)   800-HP electric motor: broken rotor   motor power   32 
3) EPRI (S)   500-HP electric motor: turn-to-turn short  motor power   32 
4) Otero/Spain (S)  ¼-HP electric motor: imbalance    acceleration   32 
5) PSU/ARL (A)  30-HP motor: overloaded gearbox   load torque   32 
6) PSU/ARL (A)  30-HP motor: overloaded gearbox   vibration power  32 
7) PSU/ARL (A)  30-HP motor: overloaded gearbox   vibration power  32 
8) PSU/ARL (S)  crack in rotating blade       motor power   32  
9) PSU/ARL (A)  motor-driven bearing       vibration power  32 
10) EPRI (S)   800-HP electric motor: air-gap offset   vibration power  present work 
11) EPRI (S)   800-HP electric motor: broken rotor   vibration power  present work 
12) EPRI (S)   500-HP electric motor: turn-to-turn short  vibration power  present work 
13) PSU/ARL (A)  30-HP motor: overloaded gearbox   vibration power  present work 
14) PSU/ARL (A)  30-HP motor: overloaded gearbox   vibration power  present work 
15) PSU/ARL (A)  30-HP motor: overloaded gearbox   vibration power  present work 
16) PSU/ARL (A)  30-HP motor: overloaded gearbox   vibration power  present work 
17) PSU/ARL (S)  crack in rotating blade       vibration power  present work 
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Figure 1: Results for EPRI air-gap offset seeded fault: (a) vibration power (P) versus time (milliseconds); (b) 
minimum (PN), negative of the absolute average deviation (-a), standard deviation (σ), and maximum (PX) of P 
for each test; (c) skewness (s) and kurtosis (k); (d) number of time steps per cycle (m); (e) first minimum in the 
mutual information function (M1) and first zero in the autocorrelation (Z1); (f) correlation dimension (D); and (g) 
Kolmogorov entropy (K). 
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Figure 2: Plots of the four nonlinear dissimilarity measures for the airgap-offset seeded-fault from vibration 
power with the following phase-space parameters: d=3, S=3, λ=11. Dataset #1 is for the nominal (no fault) state. 
Datasets #2-3 are for two different airgap-offset faults. 
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Figure 3: Results for EPRI broken-rotor seeded fault: (a) vibration power (P) versus time (milliseconds); (b) 
minimum (PN), negative of the absolute average deviation (-a), standard deviation (σ), and maximum (PX) of P 
for each test; (c) skewness (s) and kurtosis (k); (d) number of time steps per cycle (m); (e) first minimum in the 
mutual information function (M1) and first zero in the autocorrelation (Z1); (f) correlation dimension (D); and (g) 
Kolmogorov entropy (K). 
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Figure 4: Plots of the four nonlinear dissimilarity measures for the broken-rotor seeded-fault vibration power 
data versus fault severity (number of broken rotor bars). Dataset #1 is for the nominal (no fault) state. Dataset #2 
is for the 50% cut in one rotor bar. Dataset #3 is for the 100% cut in one rotor bar. Dataset #4 is for two cut rotor 
bars. Dataset #5 is for four cut rotor bars. The PS reconstruction parameters are: d=3, S=130, and λ=21. 
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Figure 5: Results for EPRI turn-to-turn seeded fault: (a) vibration power (P) versus time (milliseconds); (b) 
minimum (PN), negative of the absolute average deviation (-a), standard deviation (σ), and maximum (PX) of P 
for each test; (c) skewness (s) and kurtosis (k); (d) number of time steps per cycle (m); (e) first minimum in the 
mutual information function (M1) and first zero in the autocorrelation (Z1); (f) correlation dimension (D); and (g) 
Kolmogorov entropy (K). 
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Figure 6: Plots of the four nonlinear dissimilarity measures from the turn-to-turn short seeded-fault vibration 
power. Dataset #1 is for the nominal (no fault) state. Dataset #2 is for the 2.7-ohm short. Dataset #3 is for the 
1.35-ohm short. The PS reconstruction parameters are: d=2, S=6, λ=57. 
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Figure 7: Phase-space dissimilarity measures versus time for the MDTB accelerated failure test (Run #36) from 
vibration power data: (a) – (d) the four renormalized PSDM; (e) composite measure, Ci, of the four PSDM; (f) 
end-of-life indicator, G (solid), running maximum of G (dashed), and ratio, r, of successive maxima (-.-) in G. 
Note that the vertical axis is the log10 of the parameter in subplots (a)-(f), and that 3log10(r) is plotted in (f) for 
clarity. The phase-space parameters are S=274, d=2, and λ=1, which are identical to those used in previous 
analysis32 to show forewarning consistency. 
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Figure 8: Phase-space dissimilarity measures versus time for the MDTB accelerated failure test (Run #39 2X 
portion) from vibration power data: (a) – (d) the four renormalized PSDM; (e) composite measure, Ci, of the 
four PSDM; (f) end-of-life indicator, G (solid), running maximum of G (dashed), and ratio, r, of successive 
maxima (-.-) in G. Note that the vertical axis is the log10 of the parameter in subplots (a)-(f), and that 3log10(r) is 
plotted in (f) for clarity. The phase-space parameters are S=274, d=2, and λ=1, which are identical to those used 
in previous analysis32 to show self-consistency. 
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Figure 9: Phase-space dissimilarity measures versus time for the MDTB accelerated failure test (Run #39 3X 
portion) from vibration power data: (a) – (d) the four renormalized PSDM; (e) composite measure, Ci, of the 
four PSDM; (f) end-of-life indicator, G (solid), running maximum of G (dashed), and ratio, r, of successive 
maxima (-.-) in G. Note that the vertical axis is the log10 of the parameter in subplots (a)-(f), and that 3log10(r) is 
plotted in (f) for clarity. The phase-space parameters are S=274, d=2, and λ=1, which are identical to those used 
in previous analysis32 to show self-consistency. 
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Figure 10: Results for PSU seeded shaft-crack fault: (a) vibration power (P) versus time (milliseconds); (b) 
minimum (PN), negative of the absolute average deviation (-a), standard deviation (σ), and maximum (PX) of P 
for each test; (c) skewness (s) and kurtosis (k); (d) number of time steps per cycle (m); (e) first minimum in the 
mutual information function (M1) and first zero in the autocorrelation (Z1); (f) correlation dimension (D); and (g) 
Kolmogorov entropy (K). 



 32 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

1

2

3
(a)

LO
G

10
[U

(χ
2 )]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

1

2

3
(b)

LO
G

10
[U

(χ
2 C

)]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

0.5

1

1.5

2

(c)

LO
G

10
[U

(L
)]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

0.5

1

1.5

2

2.5

(d)

LO
G

10
[U

(L
C

)]

CUT DEPTH (INCHES)

 
Figure 11: The four PSDM versus cut depth for the shaft-crack seeded-fault from vibration power data. This 
result is for the best set of phase-space parameters: S=2, d=4, λ=23, B=10, and N=100,000. 
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Figure 12: Results for human electroencephalogram channel 5 of dataset #PVM006, showing time-serial plots for: (a) 2.4 
seconds of raw data collected at 250Hz, (b) correlation dimension, D, (c) Kolmogorov entropy, K, (d) U(χ2), and (e) U(L). 
The phase-space dissimilarity measures in subplots (d) and (e) are for d = 3, S = 20, λ = 17, and after removal of eye blink 
artifacts. Each cutest has N = 22,000 points, corresponding to 88 seconds. We have successfully applied this analysis to 
over sixty human datasets 
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Figure 13: Results for human dataset #EC8202, showing time-serial plots for: (a) 10 seconds of raw heart wave data 
collected at 250 Hz, (b) correlation dimension, D, (c) Kolmogorov entropy, K, (d) U(χ2), and (e) U(L). The phase-space 
dissimilarity measures in subplots (d) and (e) are for d= 5, S = 3, λ = 27, after removal of breathing artifacts. Each cutest 
had N = 18,000 points, corresponding to 72 seconds. 
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Figure 14: Results for human subject RAY show U(L) and U(LC) when no syncope occurs (above the double line), in 
contrast with U(L) and U(LC) when syncope does occur (below the double line). No results for traditional nonlinear 
measures are shown, due to their insensitivity in the other examples. The phase-space dissimilarity measures are for d =2, S 
= 2, λ = 83, after removal of breathing artifacts. Each cutest has N=20,000 points (80 seconds of data at a sampling rate of 
250 Hz). 
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Figure 15: Results for dataset #33209V, showing time-serial plots for: (a) 2.4 seconds of raw rat heart wave data collected 
at 500 Hz, (b) correlation dimension, D, (c) Kolmogorov entropy K, (d) U(χ2), and (e) U(L). The phase-space dissimilarity 
measures in subplots (d) and (e) are for d =2, S = 2, λ = 80, after removal of breathing artifacts. Each cutest has N=20,000 
points (40 seconds of data). 
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Figure 16: Results from dataset #PTX5, showing time-serial plots for: (a) 4 seconds of raw lung sounds data collected at 10 
kHz, (b) correlation dimension, D, (c) Kolmogorov entropy, K, (d) U(χ2), and (e) U(L). The phase-space dissimilarity 
measures in subplots (d) and (e) are for d = 3, S = 30, λ = 20, after removal of breathing artifacts. Each cutest has N = 
50,000 points (5 seconds of data). 


