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ABSTRACT

One of the most important problems in time-serieslysis is the suitable characterization of the
dynamics for timely, accurate, and robust condig@sessment of the underlying system. Industrial
applications involve prognostication of machineluias, thus reducing costly machine repairs,
avoiding complete breakdown with potentially cataghic effects, and decreasing concomitant and
human down-time. Biomedical applications includetedtion and forewarning of abnormal
physiological behavior to avoid (or at least reduttee harmful effects of various medical crises,
decrease patient hospitalization, and lower cdgtealth care and lost productive time.

Both machine and physiological processes displaypbex, non-stationary behaviors that are
affected by noise and may range from (quasi-)péridd completely irregular (chaotic) regimes.
Nevertheless, extensive experimental evidence atetic that even when the systems behave very
irregularly (e.g., severe tool chatter or cardidwilfation), one may assume that - for all praatic
purposes - the dynamics are confined to low dinmeradimanifolds. As a result, the behavior of these
systems can be described via traditional nonlimeaasures (TNM), such as Lyapunov exponents,
Kolmogorov entropy, and correlation dimension. Heere while these measures are adequate for
discriminating between clear-cut regular and cltadtinamics, they are not sufficiently sensitive to
distinguish between slightly different irregulahéotic) regimes, especially when data are noisyoand
limited. Both machine and physiological dynamicsially fall into this latter category, creating a
massive stumbling block to prognostication of albmarregimes.

We present here a recently developed approachcty#tures more efficiently changes in the
underlying dynamics. We start with process-indigatitime-serial data, recognizing that some data
capture most aspects of the dynamics, while othtx thay not. The data are checked for quality, and
inadequate data (e.g., lost data points, intenw#tls unchanged signal amplitude, excessive periodic
content, excessive noise, saturation at high or liowvits, and inconsistent signal amplitude across
datasets in a test sequence) are discarded. Abbejpkata are filtered to remove confounding artgac
(e.g., sinusoidal variation in three-phase elegksegnals or eye-blinks and muscular activity Bd&).

The artifact-filtered data are then used to rectheressential features of the underlying dynamias
standard time-delay, phase-space reconstructior. @rthe main results of this reconstruction is a
discrete approximation of the distribution functi@F) on the attractor. Unaltered dynamics yield a
unchanging geometry of the attractor and the ¥isitadfrequencies of its various points, correspagdi

to the baseline DF. Condition change is estaldighyecomparing the baseline DFs to subsequent test-
case DFs via new, phase space dissimilarity meagB®DM), namely the; distance ang(® statistic
between two DFs. A clear trend in the dissimilartgasures over time indicates substantial departure
from the baseline dynamics, thus signaling conditthange. The severity of this departure can be
interpreted as a "normal” fluctuation, abnormaldedbr, impending failure, or complete breakdown.

We llustrate the new approach on an assortmemhacthinery and biomedical examples. The
machine data were collected from laboratory teftgadous industrial equipment for diverse failure
modes via seeded faults and accelerated failures. biomedical applications involve detection of
physiological changes, such as epileptic seizumr EEG; ventricular fibrillation fainting, and s&p
onset from ECG; and breathing difficulty from chestunds. The PSDM show a consistent
discrimination of normal-to-abnormal transitionsiowing earlier, more accurate, and more robust
detection of the dynamical change for all of thagplications in comparison to TNM.



. INTRODUCTION

Response to an abnormal event (e.g., conditiondbas@redictive maintenance of machines, and
treatment of a patient) relies heavily on analysfinoisy data. The major roadblocks to accurate,
timely, and robust prognostication include [1]: @omplete understanding of event evolution to the
abnormal state; (b) lack of predictive methodolegier unsteady signatures; (c) ignorance about
controlling parameters; and (d) unavailability et facilities to emulate a real, operational indalk
environment or inappropriateness of such testaimans. Our present approach is far from proposing
a complete and universally applicable solutiontis problem, but does offer a partial solution. In
particular, we address items (a)-(b) by quantifyting (non-stationary) condition change as a sequenc
of nonlinear statistical signatures; item (c) bgaasating change in the controlling parameter \ilin
response of the equipment or biomedical procesd; ilmm (d) by tests that resemble in-plant
operations or use of real physiological data ferlilomedical endpoint.

Machine dynamics [2-27] has a long history [11].tMeutting forces during machine tool chatter
have long been recognized as “very complex” andyvar from sinusoidal,” implying nonlinear
dynamics [23]. Tlusty[12, 18-20] published extemsexperimental (in)stability diagrams for turning,
milling, boring, hobbing, and planing. Qat al [16] used nonlinear measures to diagnose dynamics
using vibration data from rotating machinery (tudenerator and compressor). Bukkapatnam et al. [3]
analyzed data from lathe cutting and found low disienal, chaotic features. Our previous work
focused on the nonlinear dynamics of machine tdwltter [28, 29], and used phase-space (PS)
dissimilarityto detect condition change in various physical psses, namely: distinguishing different
drilling conditions (tool wear) from spindle mot@urrent of a machining center; distinguishing
(un)balanced centrifugal pump states from eledtmator power; and forewarning of a bellows
coupling failure in a rotating drive train from neotcurrent. [30] Our more recent work used phase-
space dissimilarity to determine condition changaniachines due to seeded faults and accelerated
failure progression [31-33]. Delogu, Rustici, ammvorkers found hyperchaos [34] and intermittent
chaos [35] in ball milling. Pfeiffer’s analysis [Béhowed that bifurcations and chaos may be gesdrat
by various mechanical processes, such as sticldgkpto dynamic/static friction and surface impacts
additional processes include surface deformati@hnaaterial removal/wear [12, 18, 20].

Characterization of change in physiological proesds even more vexing, displaying the same
confounding features of non-stationarity, nonliitgamultiple time scales, and strong sensitivity t
environmental perturbations, with the added chgkemf the enormous complexity of a living
organism. As an illustration of the status of bamhcal prognostics, we shall briefly describe récen
work on prediction of epileptic events. Early wask prediction of epileptic seizures began in the
1970s [37], expanding rapidly over the last decallee to digital electroencephalographic (EEG)
technology and advances in nonlinear dynamics pg8-Babloyantz and Destexhe [45&nd
Babloyantz [46] suggested that EEG data have ndetgrministic features that produce diverse
behaviors, including chaos, although some invedrgahave challenged this idea [47-49]. Recently,
the Journal of Clinical Neurophysiologpublished a recent focus issue (May 2001) on pgyle
prediction [50-55]. Litt and Echauz [56] reviewedist research in May 2002, including time- and
frequency-domain analysis, nonlinear dynamics ahdos, as well as neural networks and other
artificial intelligence approachetEEE Transactions on Biomedical Engineeripgblished a focus
issue (May 2003) on prediction of epilepsy [57-6B}pical measures for prediction include the latges
Lyapunov exponent [61], synchrony [57], correlatiotegral [65], and various time- and frequency-
domain features of EEG energy [58]. These resutsrenstly based on analysisiofracranial EEG.

To date, most of the effort on condition changeesssient and forewarning has focused on Fourier
spectra, conventional statistical measures (CShi, teaditional nonlinear measures (TNM), such as
Kolmogorov entropy, correlation dimension, and Lyapv exponents. While these descriptors
discriminate adequately between clear-cut regulad ahaotic dynamics, they are not always
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sufficiently sensitive to distinguish between stigldifferent chaotic regimes, especially when dat@
limited and/or noisy. This lack of discriminati@rises from averaging over the global dynamics,
which erases most of the dynamical details. Indeedinitial analysis of machine data [28] and EEG
data [69] used TNM, yielding inconsistent detectaord event forewarning. Those results indicated
that detection of meaningful information in attetadh noisy, artifact-infested signals requires more
sensitive and discriminating measures.

We addressed these limitations by defining new omeasto quantify change in time-serial data,
which are converted to a discrete geometric (plsgsece) representation. A distribution function
describes the visitation frequency and sequencé¢hefdiscrete phase-space states; (un)changing
dynamics lead to an (un)altered distribution fumtiDissimilarity measures quantify change between
test case and baseline DFs. Large dissimilaritynmdhat the system is far from the baseline, as a
forewarning of an abnormal, possibly catastrophienté. A comparison of the results shows a
significant and consistent superiority of the neaasures over the TNM for detection and forewarning
of condition change in both machinery and phygjmal data. Indeed, the PSDM have consistently
better sensitivity and discrimination power for eivéorewarning than TNM for machines [70] and
biomedical data [71].

The remainder of this paper is organized as folloWwsSection Il we review briefly the traditional
statistical and nonlinear measures used to chaiaetehange in time serial data. We then present ou
methodology and the associated PSDM including enthc developed [32] statistical test for failure
forewarning and onset. Section Il and IV presemt @esults for various machine and physiological
data, respectively. Section V summaries the resulitispresents our conclusions.

. APPROACH

Machine processes display rich dynamics, includjagsi-periodicity, nonlinearity, and occasional
chaos. To carry out the analysis, we assume {ijathe underlying dynamics are essentially
deterministic; (ii) the processes behave as a lmmedsional nonlinear, possibly chaotic dynamical
system; (iii) a single channel of data can captiieemain features of nonlinear dynamics. Phaseespac
reconstruction of multi-channel data is also pdssitiPreliminary results [72] support the assumptio
that multi-channel data provide more robust foreway than single channel data. A thorough
investigation of these aspects will be pursuedhéfture.

Several practical caveats are related to the amofidata and its quality. For example, an
insufficient amount of time-serial data may not@akgely sample the attractor, thereby degrading the
sensitivity of the dissimilarity measures [73, 78kewise, the data sampling rafg, must be much
larger than the machine dynamical ratewhich in turn must be much larger when compacethé
inverse of the timeT, to failure:fs>>v >> 1/T. We assure the validity of this assumption byuneng
that the first minimum in the mutual informatiomfttion occur at four (or more) time steps. Usually,
the analysis is confounded by artifacts in the dagsed ora priori information about the underlying
dynamics, we remove such artifacts (e.g., sinuse@aation in three-phase electrical power, restna
oscillations in vibration power, low-frequency, nsufar activity in physiological data from eye-blgk
and breathing). Also, parameters for the phaseespaconstruction must be chosen carefully for
robust and sensitive indication of condition changas part of the methodology is still quite arsly
intensive; practical (analyst independent) progonasbn must be less dependent on interaction rith
guidance from the human expert. Moreover, the apbiliity of the present methodology has been
limited to retrospectiveanalysis ofarchival data for seeded faults, accelerated failures baomdedical
events which are well characterized under apprtgptiest conditions. The separation between the
present state of our methodology and the real-wodédds is still large and will require substantial
additional development, since practical applicationll definitely requireprospectiveanalysis of
(near)jreal-timedata.

The general approach is outlined next. We firsuaega process-indicative scalar sigrelyhich
is sampled at equal time intervals starting at an initial timey, yielding a time-serial sequence of
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points,e = ety +17). We remove artifacts from the data with a zeragghquadratic filter [69, 75, 76]
that performs better than conventional filters.sTiilter uses a moving window ofsAZ1 points of data,
with the same number of data points,on either side of a central point. We fit a pafabn the least-
squares sense to these data points, and use ttral gemnt of the fit to estimate the low-frequency
artifact, fi. The residual (artifact-filtered) signa, = e — f;, has essentially no low-frequency artifact
activity. All subsequent analysis uses this artifdtered datag;.

We convert each artifact-filtered valug, into a symbolized values, namely one ofS different
integers, 0,1, . . .S— 1. Equiprobable symbols are formed by orderihd\aif the base case artifact-
filtered time-serial data points from the smallestargest value. The firdl/S of these ordered values
correspond to the first symbol, 0. Ordered dataesiN/S + 1 through Rl/Scorrespond to the second
symbol, 1, and so on. Equiprobable symbols haveumiiorm partitions in the signal amplitude with
the same occurrence frequencygobalues by construction, and thus have no inforomagéibout the PS
structure. In contrast, symbols with uniform pa&whs (uniform symbols) have inherent dynamical
structure before beginning the PS reconstructidnusT one advantage of equiprobable symbols is that
dynamical structure arisesnly from the PS reconstruction, as described belowrebler, large
negative and large positive values gf have little effect on equiprobable symbolizatidmyt
dramatically change the partitions for uniform syisb Information theoretic measures of the PS-DF
(e.g., mutual information function) are smooth fiiows of the reconstruction parameters for
equiprobable symbols, but are noisy functions ekéhsame parameters for uniform symbols. Thus, in
general, equiprobable symbols provide better digoation of condition change than uniform
symbols.

I1.1 Conventional Statistical Measures (CSM)

CSM have long been used for general characterizatibe most common statistical measures are
the mean:g = %; g/N, where the sum oveyZ;, spang alN of the pomts in the analysis window, and
the sample standard deviatian,which is deflned agw’ =% (g - g)¥(N-1). quher moments about
the mean include skewness= %; (g — g)*/Na°, and kurtosisk = Z; (9 -9) INo* — 3. A large
positive (negative) value of skewness correspoooks lbnger, fatter tail in the distribution abohet
mean to the right (left). Kurtosis measures the @amof flattening k < 0) or excess peakedneks>Q)
about the mean. Another measure is the averageerushiime steps per wave cycle (frequently used
in engineering analysis of sampled data)y N/[(nc — 1)/2] = 2N/n., for n; >>1 Heren. is the average
number of mean crossings, and two successive nreaniigs delimit one-half of a wave period. The
first zero in autocorrelation function defined A§j) = (g — 9)(g+ —9) / (N - )o? is also a useful
measure. While CSM are useful in the analysis oédr processes, they prowde inconsistent
discrimination for detection of condition change nonlinear systems. We include them here for
completeness and comparison.

I1.2 Traditional Nonlinear Measures (TNM)

The advent and rapid development of nonlinear dwadic dynamics over the last few decades has
produced new and powerful measures for charactenzaia PS reconstruction [39, 42, 43], which
uses time-delay vectors that are formed from tgenk®lized)s-data,y(i) = [S, S« » - - . ,S+(dapl-

The choice of lag), and embedding dimensiath, determines how well the PS reconstruction unfolds
the dynamics. Too high an embedding dimension coegdlt in overfitting of real data with finite
length and noise. Moreover, different observablea system contain unequal amounts of dynamical
information [77],implying that PS reconstruction could be easiemfiane variable, but more difficult
or impossible from another. Our analysis seekstarize these caveats for finite-length noisy data.

We use the term, “traditional nonlinear measureBRINl), as distinct from the phase-space
measures in the next subsection. We choose thrékeomost-frequently-used TNM, as potential
indicators of dissimilarity, namely: (i) the firshinimum in the mutual information function as a
nonlinear measure of decorrelation time, (ii) tberelation dimension as a measure of complexityg, an



(i) the Kolmogorov entropy as a measure of prebdity. We describe these measures next, with
more detailed definitions and characterizatiornhereferences cited below.

The mutual information function (MIF) measures aggx bits of information that can be inferred
from one measurement about a second, as a funcfidhe time delay between the two signals.
Shannon and Weaver [78] developed the MIF, whick {ager applied to time series. [79] The first
minimum in the MIFM;, is an average de-correlation time. The MIA(g; r) =I(r, ) = H(q) + H(r)
—H(r, ), whereH is entropy:H(q) = -2 P(q;) log.[P(a:)] andH(q, r) == P(q;, rj) log[P(q, rj)]. One
set of signals i€ = {q:;, 02, . . ,0On}, With associated occurrenpeobabilities,P(qy), P(dy), - :
P(gn). A secondaset of measurementsRs= {ri,r2 . . . N}, With a time delayelative toQ, and with
occurrenc@robabilitiesP(ry), .... ,P(rn). P(q, 1j) is the joint probability that both states ocaugédther.

The maX|mum likelihood correlation dimension [80L] 8s: D = —M{Z; In[(&;/d0 — dn/0)/(1 —
3:/d0)]} %, whereM is the number of randomly-sampled pairs of phasespoints. The maximum-
norm distance between PS-point pairandj, is & = max(& k < m-1) [gi.x — gj+«|, wherem is the
average number of data points per cycle, as defabede. The distance, is the scale length that is
associateavith noise. Distances are normalized with respee hominal scale lengtld, as a balance
between sensitivity to local dynamics (typicallydak5a) and avoidance of excessive noise (typically
at > a). The symboh denotes the absolute average deviation as an todichvariability [81],a =
Zi lgi—gl/N.

The Kolmogorov entropy (K-entropyk, is the rate of information loss per unit timetgbper
second), ands the sum of the positive Lyapunov exponents. tResifinite K is generally viewed as a
clear indication that the process manifests chatyimamics. Extremely large entropy values indigate
stochastic (totally unpredictable) phenomenéns estimated from the average number of time steps
bi, for two PS points, initiallyithin o< &, to diverge tod > 0. We use the maximume-likelihood
form of Schouteret al.[81], K =—fs log(1 — 1b), with b = Z; bi/M for M point pairs. The data-sampling
rate isfs.

TNM capture nonlinear dynamical features, but doafter a very sensitive tool for detection of
dynamicalchange.The main reason is that TNM, like CSM, are exprdsss a sum (or integral) over
(a region of) the PS, which averages all dynandesils into one number. Consequently, two (very)
different dynamical regimes may lead to very closegven equal measures. Moreover, the usual
definitions of K-entropy and correlation dimensiare in the limit of zero scale length. However, all
real data have noise, and even noiseless modeligifitaited by the finite precision computations.
Thus, we use a finite length scale that is largantthe noised, = 2a), at which to report the values of
K andD. Consequently, our values EfandD do not capture dynamical complexity at length egal
smaller thany and have smaller values than expected for thesmEle-length limit & — 0).

I1.3 Phase-Space Dissimilarity Measures

We addressed some of the limitations of CSM and Té&dMliscriminators of condition change by
introducing phase-space dissimilarity measures WSD30-33] which we review briefly for the
reader’'s convenience. The time-delay reconstructibthe symbolized data (as discussed above)
partitions the phase-space (PS) i6{dypercubes or bins. By counting the number of Pi&tpdhat
occur in each bin, we obtain the distribution fumct(DF) as a discretized density on the attradige.
denote the population of th#h DF bin,R;, for the base case (nominal state), §fdr a test case (off-
normal state), respectively. Comgarison of the tee to the base case Involves measuring the
difference betweeR, with § by they” statistic and.; distance:

XZ:Z(RJ_Si)Z/(RJ"'SJ)’ (1)
L=Y|R -S]. 2



The summations in Egs. (1) - (2) run over all & gopulated PS cells. Théstatistic is one of the
most powerful, robust, and widely used tests fasidailarity between two DFs. Thig’ is not an
unbiased statistic for accepting or rejecting d stdtistical hypothesis but rather isedative measure
[76] of dissimilarity between the two DFs. The distance is the natural metric for DFs by its dire
relation to the total invariant measure on theaatbr. These measures account for changes in the
geometry and visitation frequency of the attrac@wnsistent calculation obviously requires the same
number of points in both the base case and test E£dss, identically sampled; otherwise the
distribution functions must be properly rescaled.

The accuracy and sensitivity of the PS reconswaatan be enhanced by connecting successive PS
points as prescribed by the underlying dynamigs) — y(i + 1). Thus, we obtain a discrete
representation of the process flofi) = [y(i), y(i + 1)] that is formed by adjoining two successive
vectors from thed-dimensional reconstructed P%(i) is a 2l-dimensional, connected-phase-space
(CPS) vector. As befor® andSdenote the CPS DFs for the base case and testreapectively. We
then define the measures of dissimilarity betwesese¢ two CPS DFs via tHe-distance and/?
statistic, as before [73, 74, 82-84].

on :;(Rjk =Sy )2 /(Rjk +Sjk)’ (3)
i

L. = Z‘Rjk =S| (4)
K

The subscript denotes CPS measures; the subscrjpasidk, denote the initialy(i), and final,
y(i+1), PS states, respectively. The value 1 results ird — 1 components of(i + 1) being redundant
with those ofy(i); we allow this redundancy to accommodate othé¢as dach as discrete points from
two-dimensional maps. CPS measures have higherirdisating power than their non- connected
counterparts Indeed one can prove [73] that thesasures satisfy the inequalitigé< L, X < L, L
< L, andx®< X

We call the quantities in Egs. (1) — (4), phasecspdissimilarity measures (PSDM). Their
definitions allow PSDM to flag transitions betweeegular and chaotic regimes, but also to
discriminate well between different chaotic regim@ééile straightforward methods exist [39, 42, 85]
for discriminating between regular and chaotic wmtior for detecting the transition between these
regimes, discriminating between close chaotic reginte.g., Lyapunov exponents, Kolmogorov
entropy, correlation dimension, etc. [42, 43]).alnost impossible. The reason for the superior
performance of PSDM is rather simple: TNM use &edénce of averages, while PSDM use sums of
the absolute value of differences.

The disparate range and variability of the PSDMentheir interpretation and comparison rather
difficult, especially for noisy data. We obtain ansistent means of comparison via renormalized
d|SS|m|Iar|ty measures (RDM) [732 74], by proceegflias follows. If V denotes a dissimilarity
measure from the se¥ = {L, L, X%, andxc}, we obtain the mean valié, of the dissimilarity
measure by comparison among B(@—l)/Z unique combinations of th& base case cutsets, with a
corresponding sample standard deviatenWe subsequently compare each non-overlapping:aset
cutset to each of thB base case cutsets, and obtain the correspondergger dissimilarity valuey;,
of theith cutset for each dissimilarity measure. The RBiMhe measur® is defined as the number
of standard deviationthat the test case deviates from the base case, d¢dh= |V, — V |/o1. A
statistically significant trend in the RDM indicatabnormal dynamics for event forewarning.

The best choice of the parameter sk, W, S d, B, A}, depends not only on the system, but also on
the specific data. We choose a “reasonable” valu¢hie numberB, of base case cutsetss®B < 10,
as a balance between a reasonably short quasirgtgti period of “normal” dynamics and a
sufficiently long period for statistical significee. We find that timely forewarning is obscureday
value forN that is too large, while inadequate statisticathgiéng of the attractor occurs N is too
small.. Our analysis proceeds as follows: (a) cedbe parameter setN{w, S, d, A}; (b) compute the



renormalized PS dissimilarities for the specifitagand (c) systematically search over the paramete
{N,w, S d, A}, to find the best forewarning indication.

Our previous work [30-33] found that RDM are semsitmeasures of condition change, but that
further improvements are needed to give an explidication of machine failure. Thus, we seek a
more robust and specific end-of-life (EOL) forewiagn Extensive application of the PSDM approach
[32, 33] shows that all four of the PSDM displayngar trends, as illustrated by the analysis of the
machine data below. This observation suggestsdfirition of a composite measur@, as the sum of
the four renormalized PSDM for tlh dataset:

= U(X) + U(Xc) + U(L) + U(Le). (5)

This composite measure is expected to be more tratars any one of the PSDM, while accurately
indicating condition change. The EOL indicationnfrghis composite measure is then quantified as
follows. We use contiguous, non-overlapping wind@i/€; to obtain a least-squares straight-line fit:

yi=ai+Dhb. (6)

The window length oh = 10 values ofZ; (andy; below) is chosen consistent with the number of
cutsets in each snapsh8t£ 10). Other values @ give inferior indication of condition change. Next
the varianceg,?, measures the variability of ti@ values about this straight-line fit:

0> = % (yi — C)(n-1). 7)

G measures the variability of nextvalues ofC; about an extrapolation of this straight-line fit:
G =3 (yi —C)%0s”. (8)

Other fits (quadratic, cubic, and quartic) extrapelpoorly outside the fitting window.

The index|, in Egs. (6) — (8) runs over tlieevalues ofC; andy;. The quantityG is S|m|Iar to a chi-
squared statistic, but we do not use that notatibmvoid confusion with the twg® PSDM. A
statistical test foG would involve (for example) the null hypothesiatldeviations from the straight-
line fit are normally distributed. Analysis of adegated machine-test data uses Egs. (5) — (8)ttactx
both forewarning and an indication of failure on&&e present the results of this analysis next.

1. APPLICATION TO MACHINE DATA

Without a model, the “correct” choice of procesditative data can be justified ordyposteriori
As a practical matter, this choice is limited toaserable process variables. Moreover, the analyst’s
choice must recognize that not all observablesucapghe same amount of information [77]. Typical
data encountered in machine/industrial applicatians tri-axial acceleratiod, and three-phase
electrical currentl;, and voltageV;. From these data, we calculate the instantanecchanical
(vibration) or electrical poweP /7 a L] a dtor Z; I;V;, respectively. The use of vibration or electrical
power is certainly not unique. Indeed, one compbrgnacceleration (or current or voltage) may
provide an adequate process-indicative signal tcaetxcondition change. The use of power has the
advantage that only one channel of data is analya#iter than analysis of several channels (dgeet
channels of acceleration, or six lpfandV;) to find the best signal for change discriminatidinis
paper presents details of the forewarning analygsvibration power Analyses of three-phase
electrical power, and individual channels of cutreroltage, acceleration, velocity, and torque are
described in Refs. 31 and 33.

For this analysis, the datasets for each testens#guence were concatenated into a single long
dataset. We verify data quality by checking foe ftroper number of data points, any intervals with
unchanged signal amplitude, adequate sampling eadegssive periodic content, excessive noise,
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saturation at high or low limits as an indicator iofproper data scaling, and consistent signal
amplitude across datasets in the test sequencese@uint analysis uses only data that pass these
guality tests.

The Electric Power Research Institute (EPRI) spmgsavork on predictive maintenance for large
motors, simulating common failures via seeded $ayB6] Present analyses use tri-axial (vibration)
acceleration data from the inboard (IB) motor lamat because all data from the outboard motor
location failed the quality check. Data were reeardn 1.5-second snap-shots at 40 kHz (60,000
points per dataset). Our analysis averages theuresasver five subsetB € 5) of 12,000-points.

[11.1 EPRI Air-Gap Seeded Fault

One EPRI test [86] involved operator-imposed ajp-g#sets in the rotor-stator alignment. The test
bed was a three-phase, 800-HP sleeve-bearing, iaumd Allis Chalmers induction motor, rated at
4160 volts and 100 amps at 60 Hz with 10 poles¢c®gper rotor bars, 40 stator slots, running at a
normal speed of 710 RPM. The first dataset ofseguence involves the motor running in its nominal
state. Two different air-gap offset seeded faulesemthen imposed via preinstalled jackscrews. The
second dataset imposed a static inboard air-gaptadf 8 mils from the nominal value of 30 mils.eTh
third dataset retained the first fault, and addestiaéic outboard air-gap offset by 20% in the ojtpos
direction from the inboard shift, resulting in thetor being skewed relative to the stator. Figuae 1
shows a 20-millisecond segment of vibration powatadwith complex, nonlinear features. The
corresponding statistical measures (Figs. 1b-1étraditional nonlinear measures (Figs. le-1g)@lo n
provide a clear indication of the increasing seayeof the seeded fault. Figure 2 shows that alf fou
phase-space dissimilarity measures rise linearti wicreasing fault severity, yielding good change
discrimination.

[11.2 EPRI Rotor-Bar Seeded Fault

A second EPRI [86] test involved operator-imposadigl or total cuts in the rotor bars. The test
bed was the same Allis Chalmers motor, as in Séd&. The test sequence began with the motor
running in its nominal state (first dataset), folld by progressively more severe broken rotor bars.
The second dataset involved one rotor bar crog®aemut 50% in half at the 11 o’clock position.elh
third dataset was for the same rotor bar now awuth 100%. The fourth dataset was for a second
rotor bar cut 100% at the 5 o’clock position, ekad80° from, in addition to the first rotor failure.
The fifth dataset was for two additional rotor bau$ adjacent to the original 11 o’clock bar, withe
bar cut on each side of the original, yielding fiwars completely open. The complete test sequence
then captured an exponentially growing fault, fraominal operation, to %2, to 1, to 2, to 4 broken
rotors bars. Figure 3a shows a 20-millisecond segnoé vibration power data with complex,
nonlinear features. The corresponding statisticehsares (Figs. 3b-3e) and traditional nonlinear
measures (Figs. 3e-3g) do not provide a clear atidic of the exponentially-growing severity of the
seeded fault. Figure 4 shows that all four phasesplissimilarity measures rise linearly with the
increasing fault severity, thus yielding good chedgscrimination.

[11.3 Analysisof Turn-to-Turn-Short Seeded Fault Data

A third EPRI test [86] involved operator-imposedrttio-turn shorts in a motor. The test bed was a
three-phase, 500-HP, sleeve-bearing, form-woundefériElectric induction motor, rated for 4,000
volts at 60 Hz, with 84 rectangular copper rotarsbé poles, and 108 stator slots, running at aimalm
speed of 1,185 RPM. The first dataset was fromntie¢or, running in its nominal state. A second
dataset involved a turn-to-turn (2.70-ohm) shorirstalling a large screw between two turns. Adhir
dataset involved a more severe turn-to-turn (113%Joshort by installing a smaller screw between two
turns. The analysis sequence goes from largest-tddiurn resistance (infinite resistance,
corresponding to no short), to smaller (2.7 ohritsymallest (1.35 ohms), corresponding to increpsin
severity in the fault. Figure 5a shows a 20-mittsed segment of vibration power data with complex,
nonlinear features. The corresponding statisticehsares (Figs. 5b-5e) and traditional nonlinear
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measures (Figs. 5e-5g) show some consistency wéthnicreasing severity of the seeded fault. The
minimum @Py) rises and maximunPy) falls (Fig. 5b) monotonically over the test segee Kurtosis
decreases and skewness increases monotonically §&)jgover the test sequence. Linear increases
occur in the average number of time steps per dyete 5d) over a very narrow range (7.2-7.6), and
the first zero in the autocorrelation function (Fie). Figure 6 shows that all four phase-space
dissimilarity measures rise linearly with the inseng fault severity, thus yielding good change
discrimination.

[11.4 Analysis of Gear-Failure Acceleration Data

The Pennsylvania State University (PSU) operates Alpplied Research Laboratory [87],
including the Mechanical Diagnostics Test Bed (MDTB 30-HP, 1750-RPM, alternating current
(AC), electric motor drives a gearbox, which isded by a 75-HP, 1750-RPM AC (absorption) motor.
A digital vector drive unit controls the currentttee absorption motor for torque variation up t® 22
Ibs. The MDTB can test gear ratios from 1.2:1 tb 6x the 5-20 HP range at 2 to 5 times the rated
torque of single and double reduction industrisdrpexes. The motors and gearbox are mounted and
aligned on a bedplate, which is mounted on isafefis@t to prevent vibration transmission to th@flo
The shafts are connected with both flexible anairagpuplings. Torque limiting clutches on both side
of the gearbox prevent transmission of excessikgue during a gear jam or bearing seizure. Torque
cells on both sides of the gearbox directly monit@ loads. The protocol for this accelerated failu
test involves a break-in period at the nominal (108§d (530 ft-Ibs) for one hour, followed by twice
(2X) or three times (3X) the normal load, as showiTable 1 for Run #36, which also includes the
time to failure Tr). The EOL failures typically include pinion damadpeoken teeth, and a sheared
shaft. Ten-second snapshots of tri-axial acceletentata were sampled at 52 kHz; see Table 1 &r th
interval (At) between each snapshot. We convert the accelezordata during the overload period
into vibration power for this analysis. As befotde CSM and TNM show little if any failure
forewarning®* so we do not show them here.

Figure 7 shows that all four PSDM rise systemdicdFigs. 7a - 7d) to provide failure
forewarning. Indeed, the abrupt increase in allr fBDM at 160 hours clearly forewarns of the
imminent failure. We obtain this forewarning by qtitying significant deviations from the general
trend via application of Egs. (5) - (8). Chi-squhstatistical tables give a value®f< 28.5 forn = 10
degrees of freedom with a probability of one outhef 650 snapshots or (1/650 ~ 1.5 )LHowever,
we observe many instances@#28.5 (solid curve in Fig. 7f), arising from dynaal correlations in
the accelerometer data, thus violating the requergrfor independent, identically distributed samsple

Instead, we usdés as arelative EOL measure. Althougls varies erratically, we observe a
systematic trend in the running maximum ®f Gnax as shown by the dashed curve in Fig. 7f,
neglecting (for example) the first six G-valuesawoid startup transients. This running maximum
steadily increases in modest increments to 376 dker first 159.75 hours of the test, while
intermediate values d@ fall well below the running maximum. Subsequendyarge increase occurs
in C; at 160 hours, which produces a correspondinglgelaise inG and therefore iGnax The
resulting jumps inGnax are quantified by the chain curve (-.-) in Fig. &§ the ratio of the current
maximum inG, (Gmaxyk, to the previous maximum @, (Gmayk-1, R = (Gmayk/(Gmayk-1- G rises to 2,493
at 160 hours, with a corresponding rato: 6.62, while the largest non-EOL ratioRs= 2.22 at 28.5
hours. We find that the forewarning valuesGpfacross the various MDTB tests are not consishert,
that the values dBmax andR consistently provide both forewarning of the fegl@and indication of the
failure onset, as shown in Table 1: (a) the largest-EOL value oR (Ryeol) and the corresponding
value ofG (Gneol); (b) values oR (Reol) andG (Geol) that indicate the end of life, and the matching
time (Teo/TraiL); (C) the value o6 at failure onsetGonsey) and the corresponding tim&duset TraiL);
and (d) the failure-endpoint tim&gp.).

Table 1 also shows results for Runs #37-38. Theesponding plots [33] are very similar to Fig. 7
and are not shown. Runs #36-38 have largest non-&Dles:RyeoL = 6.20 andGneor = 376. The
smallest EOL values ar:o, = 6.62 and>go. = 2,493. Thus, limits (for example) Bf> 6.4 andG >
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1,800 provide EOL forewarning. Moreover, we findthhe largest EOL value @go. = 13,486,
while the smallest failure-onset valueGsnser= 16,284. Thus, an intermediate value (for exainple
G > 15,000 distinguishes the EOL from failure onfsgewarning. This approach gives quantitative
limits for transitions from nominal operation (grekght for “go” in a traffic signal metaphor), to
forewarning of failure (yellow light for “caution;)and to failure onset (red-light for “stop”).

MDTB Run #39 involves a different test protocobrae-hour break-in period at nominal load (1X),
followed by 2X load for two hours, after which tlead alternates between 3X and 2X loads for ten
and five minutes, respectively. Figures 8-9 show Run #39 PSDM for the 2X and 3X overload,
respectively. The sawtooth features in each okthplots correspond to the transition between 2K an
3X loads; the straight-line portion in Fig. 8 capends to the 2X segment in Fig. 9, and inversely.
Run #39 seeks failure forewarning in the presemdean changes. Table 1 shows that the above limits
for G andR also distinguish between the non-EOL (green) a@d Eyellow) states for the 3X-portion
of this test, because the higher overload driveddhure. These limits do not apply to the 2X telste
to the reduced damage at the lower overload. Unisurgly, a different limit ofG > 38,000 (for
example) distinguishes between the EOL and faiturset forewarnings, due to the change in test
protocol. The green-yellow-red approach still applior this test.

[11.5 Analysis of Shaft-Crack Seeded Fault

We analyzed additional PSU seeded-fault data wiphogressively increasing depth of cut at the
base of a motor-driven rotor blade. This test seqaesimulates the growth of a crack in a turbo-
machine, which eventually causes failure. The r@alriven at a fixed rotational speed by a frawtio
horsepower DC motor that was made by Bodine Ee@ampany, with typical electrical values of 4
volts and 2 amps. Test data at each depth of cue¢ weaxial accelerations in three orthogonal
directions on one bearing pillow block. The seqeetest states were: (a) nominal operation with no
cut, (b) successively deeper cuts through onegiftequi-angularly-spaced 5/8’-diameter shafts that
were fixed perpendicular to the rotation axis of tinotor-driven rotor. The cut depths range from
1/16” to 3/8”. Figure 10 shows a resultant segmentvibration power (Fig. 10a), along with
conventional statistical measures (Figs 10b-10#], teaditional nonlinear measures (Fig. 10e — 10g).
The magnitudes of minimum and maximum in vibratpower (Fig. 10b) are constant, then rise
abruptly for the deepest cut. The number of timepstper cycle (Fig. 10d) rises slowly and
monotonically, also showing a large increase ferldrgest cut depth. None of the other measures in
Fig. 10 show a consistent change over this tesiesesp. Figure 11 shows that all four PSDM rise
monotonically by one-hundred-fold as the cut deipitreases from zero (baseline) to 3/8”. These
strong indications of change are in sharp conteagie weak ones of Fig. 10.

IV.APPLICATION TO PHYSIOLOGICAL DATA
V.1 Analysis of EEG Data

We present five illustrations of our approach bynparing traditional nonlinear measur&s gnd
K) with phase-space dissimilarity measurngsafidL;). As discussed in Sect. 1.3, direct comparison of
these measures is difficult due to their disparedae@ge, variability, and physical meaning.
Consequently, renormalization of the PSDM allowsamegful comparlson by defining as the value
of each indicator for theth cutset from the seY = {D, K, ¥% andL}. The remainder of the RDM
analysis remains the same as before. Dynamlcaésstabse to (far from) the baseline have small
(large) values of the renormalized dissimilarity.

Human electroencephalogram data were acquiredglalimical epilepsy monitoring and analyzed
by the procedure of Section Il. Figure 12 showscdyfpresults. Raw data in subplot (a) have very
complex, non-periodic features that are typicabrdin waves. The seizure event occurred at 110.7
minutes, as denoted by the solid vertical lineubpots (d) and (e). No seizure event forewarnmg i
provided by the correlation dimension in subplgt @y by the Kolmogorov entropy in subplot (c). The
isolated peaks at 42 and 58 minutes in subploae)not significant. An event forewarning of 27

11



minutes is provided by(y%) in subplot (d) andJ(L) in subplot (e), with two (or more) successive
occurrences above the threshold of 5 (dashed hdakdine) at 85 minutes (vertical dashed line).
Hively and Protopopescu (2003) give additional tdietaf the methodology for this and subsequent
examples. Our most recent results give a total tate of 56/60 with up to 5 hours forewarning via
analysis of two bipolar EEG scalp channels. [72]

V.2 Analysis of EKG Data for Ventricular Fibrillation

Human electrocardiogram data were acquired durim@udatory monitoring. Figure 13 shows
results for a ventricular fibrillation event at 8inutes. The raw data in subplot (a) show tenrdist
heartbeats and their associated quasi-periodicli(am) features. The correlation dimension in
subplot (b) varies randomly (no forewarning feasiirevith a rise at the fibrillation event. The
Kolmogorov entropy in subplot (c) varies erratigathe isolated peaks occurring at 8 and 24 minutes
are not valid forewarnlng indications. Event foremiag of 16 minutes (the vertical dashed line) is
provided by botrU(x) in subplot (d) andU(L) in subplot (e); forewarning corresponds to two (0
more) successive occurrences above the threshdiash€éd horizontal line). Similar results were
obtained for several additional datasets.

V.3 Analysis of EKG Data for Syncope

Human electrocardiogram data were acquired duabgrhtory tests of fainting (syncope), under
the following protocol: (i) lying horizontal for 1@ninutes, (ii) lying in tilted condition (T’Ofrom
horizontal) for 40 minutes, and (iii) lying horiziah again for 5 minutes. Figure 14 (top) shows non-
syncopal results with low values of renormalizedsanilarity (~10) that increase very slowly and
erratically over the tilt period (slope, A~0.06-D.per minute). Figure 14 (bottom) shows syncopal
results for the same subject with much larger neratized dissimilarity (40-70) that increase much
more rapidly over the tilt period (A~0.8-1 per mieuy The tilt period in this second test was
terminated early when the subject fainted. Sinmégults are obtained for a second subject.

V.4 Analysis of EKG Data for Sepsis

Heart wave data were obtained via surface chestreties from anesthetized rats subjected to an
induced sepsis experiment. After 55 minutes of rabstate recording, each test rat was exposed to
inhaled bacterial endotoxin that induces an inflatory response and eventually sepsis. Figure 15
shows sample results. Raw data in subplot (a) ki#tenct heartbeats with additional quasi-periodic
(nonlinear) features. No indication of conditiorange is displayed by either the correlation dimamsi
in subplot (b), or by the Kolmogorov entropy in pldi (c). The condition change is shown clearly by
bothU(y?) in subplot (d) andU(L) in subplot(e), which remains low for the first 57 minuteisjig
abruptly after the exposure onset, remaining haghttie next 20 minutes, then decreasing slowly as
the immune response fought off the bioagent efféldtss recovery response is consistent with other
physiological observations during the test (notvamo The total true (negative) positive rate for
(un)exposed animals is (6/6) 17/17.

V.5 Analysis of Lung Sounds

A surface stethoscope acquired lung sounds datagdiung experiments on anesthetized pigs. The
baseline state consisted of normal breathing. Suiesde test cases were obtained by injecting a
controlled volume of air (in increments of 100 rhitkrs up to 1400 milliliters) in the space betwee
the diaphragm and the lungs, making breathing asingly more difficult. Figure 16 shows sample
pneumothorax results. Raw lung sounds data in sulfp) have very complex features, including
quasi-periodic heartbeats that are superimposedlam breath-cycle undulations. The correlation
dimension in subplot (b) provides no clear indigatof condition change. The Kolmogorov entropy in
subplot (c) likewise varies erratically. Conditiohange is indicated by botb(y?) in subplot (d) and
U(L) in subplot (e); both rise to a plateau of 5 0¥@9-500 ml, then increase to values larger than 20
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over 500-1300 ml thereby providing robust forewaghof the animal's death at 1400 ml. Similar
results were obtained for a second animal.

V. DISCUSSION and CONCLUSIONS

We have developed a model-independent method tatifuaondition change from complex,
time-serial data. First, we use a novel zero-plgaselratic filter to remove confounding artifactad(s
as sinusoidal periodicity from three-phase elealrisignals, and eye-blinks or breathing from
biomedical data). The artifact-filtered data aren@rted into a statistical distribution functiorath
describes the visitation frequency and sequenceéhefdynamical states. Dissimilarity measures
between baseline and test distribution functiong&s)Ddetect condition change by summing the
absolute values of the differences between DFs.méthodology is quite general, and we illustrate it
usefulness by quantifying change for a variety athine and physiological events. Success for these
diverse applications provides confidence that éipisroach is useful for detecting condition change i
nonlinear and chaotic processes for both machidebamedical applications.

Examples of machine failure forewarning includetedéng balanced and unbalanced centrifugal
pump conditions from motor power; [30] distinguistpi different drilling conditions from spindle
motor current of a machining center; [30] and peBdg failure of a bellows coupling in a rotating
drive train from motor current; [88] discerning tt#ference in micro-cantilever vibrations with and
without mercury on the sensor; forewarning of faglin electrical motors (Figs. 1-6) from vibration
power and motor power; [33] and forewarning of el in motor-driven components from vibration
power (Figs. 7-11) and motor power. [33] Table Bmarizes recent results for forewarning of seeded
faults and accelerated failures in various machamesequipment. We compare conventional statistical
measures (CSM), traditional nonlinear measures (T,Ndhd phase-space dissimilarity measures
(PSDM) as indicators of condition change. CSM ideluminimum, maximum, average, sample
standard deviation, skewness, kurtosis, average 8teps per cycle, and first zero in the auto-
correlation function. TNM include first minimum the mutual information function as a measure of
decorrelation time, correlation dimension as a mesasf complexity, and Kolmogorov entropy as a
measure of information loss rate. PSDM are)thstatistic and L distance between the time-delayed
reconstructions of the PS-distribution functions the discretized attractor. PSDM show more
consistent and better discriminating power for tymferewarning of failure or abnormal conditions,
than either CSM or TNM. The reason for the impropedformance of PSDM is rather simple. CSM
and TNM compare averages, while PSDM are the suen the absolute difference between the two
phase-space states. In addition, the enhancedndiisation facilitates use of PSDM on noisier data.

Examples of physiological-event forewarning inclutbeain waves for forewarning of epileptic
events (Fig. 12); heart waves for forewarning afitveular fibrillation (Fig. 13), and for detectiaof
syncope (Fig. 14) and sepsis (Fig. 15); and lungds for detection of breathing difficulty (Fig.)16
The dissimilarity measures have small values inrtbemal state, followed by significantly larger
values above a “normality threshold,” indicatinghabmal dynamics. The results show that the phase-
space dissimilarity approach is sensitive, robustd timely. PSDM show consistently better
forewarning than either CSM or TNM for physiolodiegplications.

We now have high-fidelity laboratory integration tfe technology elements into desktop-
computer software that analyzes noisy, archived datd provides indication of condition change. The
analysis is much faster than real-time (e.g., teas 12 hours of CPU time on a P4 desktop computer
to analyze 261 hours of 19-channel EEG data),[68]@n handle multiple channels.[72]

We deem these results as encouraging and worthgomtinuing development despite several
limitations, which we discuss next. First, we ub@fthe data as a training set, limiting the styth of
our conclusions. However, the alternative wouldoine equally-sized training and test sets. The
resultant training (and test) sets would resultnadequate statistics. Second, we analyze both the
machine and physiologic data from controlled tesether than an uncontrolled, real-world
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environment. Third, our results depend on carefijistment of the analysis parameters for the best
total-true rate. Fourth, we analyze only physicsatected portions of the EEG data, rather tharulhe
monitoring period. Fifth, these results are foryoallimited number of datasets (e.g., a total wfysi
EEG datasets, forty with epileptic events for grseizure type, temporal lobe epilepsy). Muchemor
data (hundreds of datasets) are needed for theepadmice of the analysis parameters as part of a
robust and conclusive statistical validation. Thesga requirements are far beyond our present
capabilities, and almost everyone else’s, basedresent publications. Sixth, we have not performed
prospective analysis of long-term continuous dataich is the acid test for any predictive approach.
Seventh, the present analyst-intensive methodolsgg retrospective analysis of archival data on a
desktop computer. Real-world forewarning requineslyst-independent, prospective analysis of real-
time data on a portable device. Clearly, much werkains to address these issues. Thus, we view the
importance of this work as examples of the ovepallential of the methodology, rather than the
specific results.

Finally, we note the recent implementation of tHeDR1 analysis on a hand-held device [89]
(personal digital assistant), which is much morgrapriate for real-world use. This success provales
portable monitor for many new directions for futuesearch and development. Moreover, an advanced
monitor might include a mobile phone and global#pmsing system to call responders automatically
to the event location. These developments wouldhallfor example) failure forewarning in critical
equipment (e.g., motors and motor driven componetsrdustrial and remote locations (e.g., motor-
driven turbine-generator at a natural gas pumpiagosn). Many potential biomedical applications
exist: epilepsy diagnosis, pre-surgical monitoriogt-patient ambulatory forewarning, monitoring for
drug trial efficacy, use in conjunction with furmti imaging (e.g., fMRI), and use in conjunctiontwit
Vagal nerve simulation for seizure control; stoletedtion via EEG and ECG in high-risk individuals;
early diagnosis of Parkinson’s disease and othainldisorders; diagnosis of CNS pathologies via
analysis of sensory-evoked potential changes in ;EHi&ynosis of head trauma via EEG changes;
hands-free computer control via removal of confongdartifacts (e.g., eye-blink and other facial
muscle activity) from scalp EEG; Cochlear-implaramitor via analysis of EEG and imposed sounds
to evaluate the brain’s processing of signals &rimg is not restored; drug/chemical effects diaigo
via EEG changes; motion disorder management by &kaBysis for onset detection, followed by deep
brain stimulation and/or trans-spinal drug infusioetection of brain ischemia (loss of blood flow)
during brain surgery; drowsiness monitor via extoacof eye-blinks (an indicator of sleepinesshiro
scalp EEG,; fitness-for-duty monitor for key persehim high stress situations via scalp EEG analysis
automated sleep staging of nighttime polysomnogdata in outpatients; daytime sleepiness monitor
of ambulatory outpatients for a sleep disordersliaa diagnosis of ambulatory outpatients via ECG
analysis on an advanced Holter monitor; forewarmfigcardiac events in ambulatory outpatients;
forewarning of cardiac events during transport byeamergency responder; fetal ECG monitor during
labor and delivery; monitor for premature and nemabafants with an elevated risk for cardiovascular
events or sudden infant death syndrome via ECG, ,Ed8@/or chest sounds; forewarning of heart
valve failure via ECG or chest sounds; faintingn@ype) monitor via ECG analysis for susceptible
patients; shock monitor via ECG/EEG analysis fautna patients; forewarning of impending rapture
of an abdominal aortic aneurism via analysis of E@Bdominal sounds, and/or aortic stress-strain
data; diagnosis of lung disorders via analysis leést sounds; forewarning/detection of an asthma
attack via chest-sounds; detection of excessiver,wi@dection, bone degeneration, and related
abnormalities in patients with orthopedic implawuits joint sounds and/or muscle activity; artificial
heart monitor via analysis of chest sounds andlectical activity to adjust pumping effort for
metabolic demand and forewarn of pump failure; iematus blood-glucose monitor via skin-mounted
optical-sensor for automatic control of insulin usfon and/or other therapeutic agents; personal
monitor for dementia-sufferers at home via multipensors (e.g., EEG, ECG, and chest sounds) to
provide early detection of illness and/or forewagnof catastrophic health events, as above; monitor
for nursing home and assisted-care residents via, HEG, pulse oximetry, body temperature; soldier
monitor via clothing-embedded sensors for battldfiassessment of the physiological state; and
sports-fitness monitor via ECG and chest soundagsess training results in terms of healthy
variability. The possibilities are manifold for ai@bly refined condition-change-indication device.
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Table 1: Summary of MDTB Test Results™

Run | Over- | AT | Rneol | Gneol | Reol | Geol Teor | Gonser | Tonset | TraiL
load min TealL TealL hr

36 2X 15 | 2.22 376 6.6 2,498 0.985 244,6539® | 162.50

37 | 3X 1 ] 1.79 333 80F 2,690 0.956  16,28496 8.55

38 | 3X 1 | 6.20 374 11.71 13,486 0.938 48,3790 4.02

39 2X 1 | 2.32 853 3.89 5231 0.980 5,28.980 8.60

39 | 3X 1 | 2.88 1,151 29.08 33,415 0.9F2 44,55299. 8.60

Table 2: Summary of Recent Machine Failure Forewarning Results

Data Provider Equipment and Type of Failure Diagnostic Data Reference

1) EPRI (S) 800-HP electric motor: air-gap offset  motor power 32
2) EPRI (S) 800-HP electric motor: broken rotor motor power 32
3) EPRI (S) 500-HP electric motor: turn-to-tuhog ~ motor power 32
4) Otero/Spain (S)  Y-HP electric motor: imbalance acceleration 32
5) PSU/ARL (A) 30-HP motor: overloaded gearbox oad torque 32
6) PSU/ARL (A) 30-HP motor: overloaded gearbox ibration power 32

7) PSU/ARL (A) 30-HP motor: overloaded gearbox ibration power 32

8) PSU/ARL (S) crack in rotating blade mapomver 32

9) PSU/ARL (A) motor-driven bearing vibratipower 32

10) EPRI (S) 800-HP electric motor: air-gap dffse  vibration power present work
11) EPRI (S) 800-HP electric motor: broken rotor vibration power present work
12) EPRI (S) 500-HP electric motor: turn-to-tstrort  vibration power present work
13) PSU/ARL (A)  30-HP motor: overloaded gearbox vibration power present work
14) PSU/ARL (A)  30-HP motor: overloaded gearbox vibration power present work
15) PSU/ARL (A)  30-HP motor: overloaded gearbox vibration power present work
16) PSU/ARL (A)  30-HP motor: overloaded gearbox vibration power present work
17) PSU/ARL (S) crack in rotating blade ation power present work
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Figure 1: Results for EPRI air-gap offset seeded fault:viayation power ) versus time (milliseconds); (b)
minimum Py), negative of the absolute average deviatia), Gtandard deviatioro§, and maximumHy) of P
for each test; (c) skewness) &nd kurtosisk); (d) number of time steps per cychg){ (e) first minimum in the
mutual information functionM,) and first zero in the autocorrelatiafy ) (f) correlation dimension); and (g)
Kolmogorov entropyK).
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Figure 2: Plots of the four nonlinear dissimilarity measufes the airgap-offset seeded-fault from vibration
power with the following phase-space parametd8; S=3, A=11. Dataset #1 is for the nominal (no fault) state
Datasets #2-3 are for two different airgap-offsets.
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Figure 3: Results for EPRI broken-rotor seeded fault: (@yation power P) versus time (milliseconds); (b)
minimum ), negative of the absolute average deviatia), Gtandard deviatioro§, and maximumHy) of P
for each test; (c) skewness) &nd kurtosisk); (d) number of time steps per cychg){ (e) first minimum in the
mutual information functionM,) and first zero in the autocorrelatiafy ) (f) correlation dimension); and (g)
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SEVERITY

Figure 4. Plots of the four nonlinear dissimilarity measufessthe broken-rotor seeded-fault vibration power
data versus fault severity (number of broken rbns). Dataset #1 is for the nominal (no faultjestBataset #2
is for the 50% cut in one rotor bar. Dataset #®idhe 100% cut in one rotor bar. Dataset #4 igi@ cut rotor
bars. Dataset #5 is for four cut rotor bars. Thedt®nstruction parameters age3, S=130, and\=21.
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Figure 5: Results for EPRI turn-to-turn seeded fault: (&ration power P) versus time (milliseconds); (b)
minimum Py), negative of the absolute average deviatia), Gtandard deviatioro§, and maximumHy) of P
for each test; (c) skewness) &nd kurtosisk); (d) number of time steps per cychg){ (e) first minimum in the
mutual information functionM,) and first zero in the autocorrelatiafy ) (f) correlation dimension); and (g)
Kolmogorov entropyK).
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Figure 6: Plots of the four nonlinear dissimilarity measufesn the turn-to-turn short seeded-fault vibration
power. Dataset #1 is for the nominal (no faultfest®ataset #2 is for the 2.7-ohm short. Datases#8r the
1.35-ohm short. The PS reconstruction parametersia?, S=6, A=57.
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Run #3DpR36: N=50000, d=2, S=274, A=1
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Figure 7: Phase-space dissimilarity measures versus timinéoMDTB accelerated failure test (Run #36) from
vibration power data: (a) — (d) the four renormediZZSDM; (e) composite measu@, of the four PSDM; (f)
end-of-life indicator G (solid), running maximum o6 (dashed), and ratio, of successive maxima (-.-) @.
Note that the vertical axis is the lg@f the parameter in subplots (a)-(f), and thagafo) is plotted in (f) for
clarity. The phase-space parameters $a274,d=2, andA=1, which are identical to those used in previous
analysié” to show forewarning consistency.
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Run #2XpR39: N=49500, d=2, S=274, A\=1
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Figure 8. Phase-space dissimilarity measures versus timthéoMDTB accelerated failure test (Run #39 2X
portion) from vibration power data: (a) — (d) theuf renormalized PSDM; (e) composite meas@geof the
four PSDM; (f) end-of-life indicatorG (solid), running maximum o6 (dashed), and ratio, of successive
maxima (-.-) inG. Note that the vertical axis is the lg@f the parameter in subplots (a)-(f), and thag3\o) is
plotted in (f) for clarity. The phase-space parareareS=274,d=2, andA=1, which are identical to those used
in previous analysféto show self-consistency.
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Run #3XpR39: N=49500, d=2, S=274, A=1
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Figure 9: Phase-space dissimilarity measures versus timthéoMDTB accelerated failure test (Run #39 3X
portion) from vibration power data: (a) — (d) theuf renormalized PSDM; (e) composite meas@geof the
four PSDM; (f) end-of-life indicatorG (solid), running maximum o6 (dashed), and ratio, of successive
maxima (-.-) inG. Note that the vertical axis is the lg@f the parameter in subplots (a)-(f), and thag3\o) is
plotted in (f) for clarity. The phase-space parareareS=274,d=2, andA=1, which are identical to those used
in previous analysféto show self-consistency.
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Figure 10: Results for PSU seeded shaft-crack fault: (ajatibn power P) versus time (milliseconds); (b)
minimum (Py), negative of the absolute average deviatia) 6tandard deviatiorof, and maximumRy) of P
for each test; (c) skewnes$ &nd kurtosisK); (d) number of time steps per cycta){ (e) first minimum in the
mutual information function\;) and first zero in the autocorrelatiafy); (f) correlation dimension); and (g)
Kolmogorov entropyK).
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Figure 11: The four PSDM versus cut depth for the shaft-ciseded-fault from vibration power data. This
result is for the best set of phase-space parasi&tet, d=4, A=23,B=10, and\N=100,000.
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Figure 12: Results for human electroencephalogram channel 5 of daRg®@b6, showing time-serial plots for: (a) 2.4
seconds of raw data collected at 250Hz, (b) correlation dimeri3jdi) Kolmogorov entropyK, (d) U(x), and (e)U(L).
The phase-space dissimilarity measures in subplots (degamrae ford = 3, S= 20,1 = 17, and after removal of eye blink
artifacts. Each cutest h&s= 22,000 points, corresponding to 88 seconds. We saseessfully applied this analysis to
over sixty human datasets
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Figure 13: Results for human dataset #£EC8202, showing time-sgidés for: (a) 10 seconds of raw heart wave data
collected at 250 Hz, (b) correlation dimensi@n,(c) Kolmogorov entropyK, (d) U(;%), and (e)U(L). The phase-space
dissimilarity measures in subplots (d) and (e) aredfob, S= 3,1 = 27, after removal of breathing artifacts. Each cutest
hadN = 18,000 points, corresponding to 72 seconds.
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Figure 14: Results for human subject RAY shadwlL) andU(Lc) when no syncope occurs (above the double line), in
contrast withU(L) and U(Lc) when syncope does occur (below the double line). Ndtsefar traditional nonlinear
measures are shown, due to their insensitivity in the etteanples. The phase-space dissimilarity measures ate=fyS
=2, = 83, after removal of breathing artifacts. Each cutestNa26,000 points (80 seconds of data at a sampling rate of
250 Hz).
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Figure 15: Results for dataset #33209V, showing time-seriakiot (a) 2.4 seconds of raw rat heart wave data collected
at 500 Hz, (b) correlation dimensidp, (c) Kolmogorov entrop¥, (d) U(x?), and (e)JU(L). The phase-space dissimilarity
measures in subplots (d) and (e) aredfer2, S= 2,1 = 80, after removal of breathing artifacts. Each cutesiNg26,000
points (40 seconds of data).
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Figure 16: Results from dataset #PTX5, showing time-serial plats(g) 4 seconds of raw lung sounds data collected at 10
kHz, (b) correlation dimensior, (c) Kolmogorov entropyK, (d) U(), and (e)U(L). The phase-space dissimilarity
measures in subplots (d) and (e) aredoer 3, S = 30,1 = 20, after removal of breathing artifacts. Each cutest\has

50,000 points (5 seconds of data).



