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Channel-Consistent Forewarning of Epileptic Events
from Scalp EEG

Lee M. Hively* and Vladimir A. Protopopescu

Abstract—Phase-space dissimilarity measures (PSDM) have [8], our working hypothesis for epileptic phenomena is that
been recently proposed to provide forewarning of impending indeed the brain behaves as a reasonably low-dimensional
epileptic events from scalp electroencephalographic (EEG) for dynamical system with regimes varying between (quasi-) pe-
eventual ambulatory settings. Despite high noise in scalp EEG, . di d letelv | | haotic). Th int tati
PSDM vyield consistently superior performance over traditional L '_C L _com.p N ey iregular (chao 'C)', .us, .|n erpretation
nonlinear indicators’ such as K0|mogorov entropy’ Lyapunov Of b|0med|cal (II’I pal‘tlcular, EEG) data. W|th|n th|S framework
exponents, and correlation dimension. However, blind application becomes both legitimate and fruitful, with global aspects
of PSDM may result in channel inconsistency, whereby multiple of brain dynamics being quantified by traditional nonlinear
datasets from the same patient yield conflicting forewarning indi- measures such as Lyapunov exponents, Kolmogorov entropy.
cations in the same channel. This paper presents a first attempt . . . . - ’
to solve this problem. and correlation dimension [2]-[6]. While these descriptors

discriminate adequately between clear-cut regular and chaotic
dynamics, they are not sufficiently sensitive to distinguish
between slightly different chaotic regimes, especially when
data are limited and/or noisy. Most brain dynamics during
I. INTRODUCTION the transition from normal activity to the seizure event and

ANS BERGER discovered electrical activity from thenostseizure recovery fall into the latter regime, making robust
cerebrum in 1923 as electroencephalographic (EE@ d timely forewarning of epileptic events an outstanding

signals. These signals have several distinct waves of differ dl_clal Cha"?f?gf' bout th il le in the US
amplitudes and frequencies that characterize various proces§f priepsy affiicts about three-milion peopie n the 1..

such as sleep, rest, wakefulness, pathologies, etc. Spe f?:ﬁe' Epilep_sy can be_ effectively treated in many in_stances,
EEG patterns convey a standard of normality, while deviatioﬁgd many patients are |r_1deed undercanstant medlca_mon. How-
from this standard indicate abnormality. The interpretation gyer. constant medlcat!qn frequently has severe side effects
time-serial EEG data is severely hindered by the lack of laat may be more debilitating than the seizures themselves.
adequate model of the central nervous system that is consis ffeover, 10%-30% of the cases cannot be controlled by

with these observations. In 1970, Hijorth introduced thrégedlcatlon. In addition, some extreme epileptic events require

parameters (activity, mobility, and completeness) to descri med_late med'cal Intervention FO ay0|d sudden_ unexplained
and quantify the EEG signal in the spatio-temporal doma ath in epilepsy (SUDEP), which is characterized by fatal

[1]. Soon thereafter, significant advances in nonlinear aﬁ:&rdiac rhythm disturbances and injuries during seizures. In

chaotic dynamics [2][6] (and references therein) suggest%neral though, while most seizures are not life threatening or

a new framework for analyzing and possibly modeling braifi " serious 'medic.:al event;, they represent an unpredictable
activity as a nonlinear dynamical system. The seminal work gpurce Of_ social nuisance, disruption, and e”?ba”assme’?t- For
Babloyantzet al.[7] seemed to indicate that EEG data have d ome pa.tlents W!th a history of only partial seizures, a r-e||ab|e
terministic features that are intertwined with noise to produce%rewamIng device may offer a new treatment paradigm of

wide variety of behaviors, including chaotic behavior. Althoug onstant.monltorigg r"athe:hthan Eontlr][uo_u? medtlc?tlon.dSuch
a few dissenting opinions have challenged this perspecti ewarning would aflow the patient to interrupt hazardous
activity, lie down in a quiet place, undergo the seizure, and
then return to normal activity. Other timely preventive steps
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an event. Jergest al. [12] compare seven linear and nonlineaf he artifact signal is removed with a novel zero-phase quadratic
measures and find changes occurring one to two minutes beffilter. Then by standard reconstruction of the dynamics [2], the
the event. Osori@t al. [13] show that the correlation integralartifact-filtered data is converted into a phase space (PS) rep-
and the correlation dimension depend on the EEG frequenegentation, which in turn is transformed to a statistical distri-
and amplitude, implying that changes in the former are due bation function (DF). Our underlying assumption is that the
trivial changes in the latter. Sunderaal.[14] chemically in- complex, high-dimensional brain dynamics evolve mostly over
duce seizures in rats and use a stochastic Markov chain magldédounded, low-dimensional region of the PS, called an “at-
to predict the interictal duratior?;, from the seizure duration, tractor.” Thus, for sufficiently long datasets, the DF captures
T,, and vice-versa. Litet al.[15] show that the energy in EEG a statistical representation of the brain activity in the form of
increases as the seizure approaches. These results are mastiyvariant measure on the attractor. If dynamical conditions
based ornintracranial EEG. change, so will the attractor itself as mirrored by the invariant
We propose the use stalpEEG, which is much less inva- DF on the attractor. The DFs from the first ten cutsets are used as
sive than intracranial data. While various approaches for seizin@se cases to represent nonseizure dynamics. Our earlier work
forewarning based on intracranial EEG have met with measfiound that a few of these base case cutsets may be atypical,
able degrees of success, scalp EEG has resisted previousatising a bias in the detection of condition change [22], [23].
forts due to: 1) attenuation of the meaningful signal througrhe base case DFs were exhaustively compared to one another
bone and soft tissue and 2) high noise contamination, dueitiopair-wise fashion to identify outliers, which were removed
eye blinks and other muscular artifacts. Our initial analysis &ifom the analysis as unrepresentative of the nonseizure state
scalp EEG used traditional nonlinear measures (TNM), suf2®], [23]. As discussed below, the present work finds that this
as Kolmogorov entropy, correlation dimension, and Lyapunaemoval of outliers is unnecessary. Next, each test case DF is
exponents, and yielded inconsistent detection and forewarncgmpared to all of the base case DFs to obtain an average con-
of the epileptic events [16]. Those results indicated that detatition change between the base- and test-case states. A fore-
tion of meaningful information in attenuated, noisy, artifact-inwarning indication of an epileptic event (TP) is obtained in any
fested signals requires more sensitive and discriminating meae channel when all four PSDM exceed a threshold for a spec-
sures. Our more recent work showed by direct comparison tlifeed number of successive occurrences. No forewarning in a
phase-space dissimilarity measures (PSDM) have consistemidnevent dataset corresponds to a TN. Finally, channel-con-
better sensitivity and discrimination power for forewarning ofistency (the focus of the present work) requires that TP and
epileptic events than TNM [17]-[22]. The reason for this imTN indications occur in the same channel(s) across multiple
provement is rather simple: discrimination by TNM is basedatasets from the same patient. This complete analysis is re-
on a difference of averages, while discrimination via PSDM jgeated for every dataset. We use all of the datasets as a training
based on averaging the absolute value of pointwise differencgst, which clearly limits the strength of our conclusions. How-
Our most recent work [23] yielded very encouraging results fever, the alternative of splitting 30 datasets into equally sized
event forewarning that is independent of patients’ age or sdsgining and test sets would have provided only 15 datasets for
event onset time, preevent activity, awake- versus asleep-sthtechannel-consistency training analysis, which we deemed to
basecase, and—to a large extent—of data quality. However, bearinsufficient on statistical grounds. The remainder of this sec-
detailed analysis found inconsistent forewarning in the sartien provides methodological details for all of these steps.
channel across multiple datasets from the same patient [23]JEEG data were acquired as part of standard epilepsy
This inconsistency arose because in our previous studies omignitoring of each patient for several days to two weeks
total trues were maximized [17]—-[23]. under standard clinical protocols. Recordings came from
Channel-consistent total trues are a much more stringent m&a-channel Biomedical Monitoring Systems Inc. instruments
sure of forewarning performance, which this present work afNicolet-BMSI, Madison, Wisconsin) with 19 scalp electrodes
dresses by: 1) formulating a quantitative measure of chaniekhe International 10-20 systems of placement as referenced
consistency in both true positives (TPs) and true negatives (TNis)the ear on the opposing hemisphere. Each channel of scalp
for multiple datasets from each of several patients; 2) measuripgtential was amplified separately, band-pass filtered between
forewarning performance in terms of channel-consistent tob—99 Hz, and digitized at 250 Hz. The data were archived
trues; 3) developing a methodology to maximize this perfoon VHS tapes, which limited the maximum record length
mance measure; and 4) showing that these improvements réisslightly more than eight hours. The attending physicians
the channel-consistent total trues substantially. The followinigdependently selected the data for our analysis from this
sections discuss the phase-space methodology, channel-comsihtive. Their sole selection criterion was that the data were
tent forewarning, and the results of our analysis. The last sectivapresentative” of the patients’ medical condition, without
presents our conclusions. regard to the presence (or absence) of artifacts or other noise.
In addition, we required that each dataset be greater than one
hour long to assure adequate data for our analysis. We also
required that event datasets include a baseline period of at
We begin this section with an overview of the PSDM. Theeast two hours, as well as the entire event (ictal) segment. The
long stream of time-serial archival scalp EEG data is first dphysician’s characterization of this data covered only the time
vided into contiguous, nonoverlapping windows (cutsetsyof interval corresponding to the dataset. Analysis of this selected
data points. Each channel of every cutset is analyzed as followata represents only a fraction of the total monitoring periods,

Il. PHASE-SPACE METHODOLOGY
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and in principle limits the generality of our results. Analysis dfitions in signal amplitude and have the advantage that dynam-
the full monitoring periods is beyond the scope of this work. ical structure arisesnlyfrom the PS reconstruction (see below).
We retrospectively analyzed 60 scalp EEG datasets: 40 wittoreover, large negative and/or positive valueg.diave little
at least one electrographic temporal lobe event, plus 20 withaiftect on equiprobable symbolization, but significantly change
epileptic events as controls. The attending physician charactidse partitions for uniform symbols. Consequently, we find that
ized each dataset, as follows: patient’s sex and age; start and sippiprobable symbols provide better discrimination of condi-
time of the data recording; onset time of the seizure event; ttien change than uniform symbols, as discussed in the results
type of seizure; the active electrode; and the patient’s activitysdction.
the start of the recording and immediately prior to the event. OurPS reconstruction [2] converts the data into a geometric form
earlier work [23, Table 1] summarizes the dataset characterizé time-delay vectorgy(i) = [si, Siya, - - - ; Si+(a—1)A], Which
tions, and will not be repeated here. The data were obtained franfold the underlying dynamics. Typically, the delay, and
41 different patients with ages between 4 and 57 years. Halfyfstem dimensionality], are related by/; = (d — 1)\, where
the patients have only a single dataset. The other 30 datagdtsthe first minimum in the mutual information function. For
are from 11 different patients with multiple datasets: seven pagivend, we setA = INT[0.5 + M, /(d — 1)] to obtain an in-
tients with two datasets, one patient with three datasets, two peger value for the lag whel; is not evenly divisible byl — 1.
tients with four datasets, and one patient with five datasets. GBymbolization divides the PS int6? bins. The DF is a dis-
analysis begins at the start of each dataset, and ends with ¢retized density on the attractor, which is obtained by counting
last full cutset in the dataset or with the cutset that includes ttiee number of points that occur in each PS bin. We denote the
first event (whichever comes first). The dataset lengths rangepulation of theth bin of the DF(Q);, for the base case, arit}
between 5016 s (1 h and 23 min) and 29 656 s (8 h and 14 mifoy, a test case, respectively. We compare the test case to the base
with an average length of 15668 s (4 h and 21 min). The cumease by measuring the difference betwé&gnwith R; [17]-[23]
lative period of the analysis is 940104 s (261 h and 8 min). Vés

analyze all 19 EEG channels in each dataset. ) (Q; — Ri)Q

We remove eye blink artifacts from scalp EEG with a zero- X = Z m )
phase quadratic filter [16] that is more efficient than conven- !
tional linear filters. This filter uses a moving window of data L= Z |Qi — Rl (3)
points,e;, with the same number of data points,on either side i

of a central point. We fit a quadratic curve in the least-squarefiere the summations run over all of the populated PS cells.
sense over this window, taking the central point of the fit as tidese measures account for changes in the geometry, shape, and
low-frequency artifactf;. The residual valugy; = e; — f;, has Visitation frequency of the attractor, and are somewhat comple-
essentially no low-frequency artifact activity. All subsequerientary. They? measure is one of the most powerful, robust,
analysis uses artifact-filtered data. and widely used comparison between observed and expected

We next convert each artifact-filtered value into a symbolizéftequencies. In this contex? is arelativemeasure [20] of dis-
form, 0 < s;, < S — 1 that is one ofS different integers. similarity, rather than a distance in the mathematical sense or
We use contiguous, nonoverlapping partitions to obtain thed® unbiased statistic for accepting or rejecting a null statistical
symbols, as followss; = 0 for gmin < ¢i < ¢1; s; = 1 hypothesis. Thd,, distance is the natural metric for DFs by its
forgr < gi < g2; ...;8, =S —2forgs_o < g; < gs—1; directrelation to the total invariant measure on the attractor and
ands; = S —1for gs_1 < gi < gmax. Here,gmin andgm..  defines a bona fide distance. Consistent calculations obviously
denote the minimum and maximum valuesggf respectively, require the same number of points in both the base case and test
over the base case data. One specific approach creates symggsie DFs, identically sampled; otherwise the DFs must be prop-
with a uniform distribution of partitions between the minimunerly rescaled.

and maximum in signal amplitude (uniform symbols) We extend the PS reconstruction by connecting successive PS
points for the dynamical flowy(i) — y(¢ + 1). Thus, we ob-
0<s;=INT|S- _(9i = gmin) <S—1. (1) tain[22] a discrete representation of the process flow [4] in the
- (Jmax = Gmin) ] ~ form of a2d-dimensional vectoty (i) = [y(i), y(i +1)], that is

The functionINT converts a decimal number to the closedprmed by adjoining two successive vectors from éheimen-
lower integer. To maintair distinct symbols, we require thatSional reconstructed PS. We c&ll:) the connected PS (CPS).

si = S — 1, wheng; = gmax. Alternatively, one can use As before, andR denote the CPS.DFs for the base case and
equiprobable symbols, by ordering &ll base case data pointstest case, respgcuvely. We then define thg F"SDM between these
from the smallest to largest value. The fifétS of these ordered W0 CPS DFs viathé, -distance ang” statistic, as before [22],
data values correspond to the first symbol, 0, by choosing an &%3]

propriate value foy; . Ordered data valu€sV/S) + 1 through 9 (Qij — Rij)Z

2N/ S correspond to the second symbol, 1, and so on up to the Xe = Z m )
last symbol S—1. For example, construction of 20 equiprobable *

symbols from 20 000 data points takes the first 1000 points in L.= Z |Qij — Rijl. ()
rank order as the first symbol, 0. The second 1000 points in rank ij

order are the second symbol, 1, and so on up to the last symAdie subscript denotes measures of the CPS DF. The first sub-
19. By definition, equiprobable symbols have nonuniform pascript in (4) and (5) is a label for the initial PS stag€;). The
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second subscript in these equations is a label for the sequel U
state,y(i + 1). The CPS measures have higher discriminatir 4
power than their nonconnected counterparts. Indeed, we «
prove [22] that the (C)PS measures defined in (2)—(5) satis
the following inequalitiesy® < L, x> < L., L. < L., and

x* < x2.

We use the firstB nonoverlapping, contiguous windows of Uc
N points (cutsets) from each channel of each dataset as b
cases. Our earlier work found that a few of these base case «
sets may be atypical, causing a bias in the detection of conditi ™ FN ™
change [22], [23]. The base case DFs were exhaustively co
pared to one another in pair-wise fashion to obtain the me
base-case dissimilarity,, and a corresponding standard devi 0 T, T, Tsz .
ation, o Here,V denotes each dissimilarity measure from the
set,V = {L, L, X2: and Xg} A chi-squared statistical testFig- 1. lllustration of the forev\_/arning window and threshold for TPs, TNs,

] . . . EPs, and FNs; see text for details.
was used to identify outlier cutsets, which were removed from
the analysis as unrepresentative of the nonseizure state [22],
[23]. A test of this approach for the present analysis yields Szhe latter time was chosen, based on input from a physician
channel-consistent-total trues over all 60 datasets without oatllaborator that even with one minute of forewarning, he could
lier removal, versus 44 channel-consistent-total trues with oate useful things to help the patient medically [24]. The vertical
lier removal for the best parameters in the results section. Caxis corresponds to a renormalized dissimilarity measiire,
sequently, all of the below analysis is done without removal @k discussed above. The horizontal dashed line (—) shows the
outlier cutsets. threshold,U-. We define aforewarning time in one channel

The disparate range and variability of these measures are dif;-, as that time when the number of simultaneous indica-
ficult to interpret, so we need a consistent means of comparistions, Ns;y;, among the four dissimilarity measures exceeds
To this end, we renormalized the dissimilarity measures [2Gjome minimum value. The best elimination of FPs occurs for
[22], [23], as described below. We compared each ofZlimse a value of Ngrp, = 4. Analysis starts at = 0, and proceeds
case cutsets to eactth{) test case cutset, and obtained the coferward in time until the first forewarning occurs, as defined
responding average dissimilarity valug, of theith cutset for above. The algorithm then obtains the forewarning statistics
each dissimilarity measure. As befofé,denotes the various by the following ordered sequence of logical tests for each
dissimilarity measures from the sé&t,= {L, L., x?, andx?}. channel:

The mean valug/, and the standard deviation,of the dissim- ~ FP forewarning at any time, when no seizure occurs, or
ilarity measurél are calculated using the base case cutsets, as forewarning withTryy < T4, of Trywy > Ts;

discussed above. The renormalized dissimilarity is the numberT P forewarning withT;, < Tpy < Ts;

of standard deviations, by which the test case deviates fromth&'N no forewarning, when no seizure occurs;

base case meabi(V) = |V; — V|/o. This renormalized dis- FN no forewarning fot < Ts.

similarity is used to test for statistically significant change in the/e denote théth dataset ag P if at least one channel shows
time-serial dynamics, as discussed in Section Ill. forewarning in the desired windoW} < Tpw < T». This as-
signmentis equivalent t6 P, = 1 for the below summations. A

T N dataset shows no forewarning in at least one channel when
no seizure occurs, corresponding®av; = 1 for the below

Once the renormalized measures for the test and base ca&sggmations. The total true rate1s = %,(TF; + TN;)/60,
have been obtained, an arbitrary threshdl@;, is set for where the sum runs over all datasets. The corresponding total
each renormalized measute to distinguish between normalfalse rate is” = 1 — 1". This approach allows selection of an
(base) and possibly abnormal (test) regimes. The choice o#propriate channel for subsequent forewarning, consistent with
reasonable threshold is critical for obtaining robust, accuratbe previous medical characterization.
and timely results. A valid forewarning is indicated by a Improvement in the channel-consistent total-true rate is car-
specified numberNocc, of sequential occurrencés > Us, ried out by maximizing an objective function that measures a
within a preset forewarning window [18]-[23]. These eventsombination of the total true rate for any one chanaslyvell
are interpreted as true positive (TP). The complete statist&s channel consistencjo quantify channel consistency, we in-
also accounts for the number of true negativésy, false troduce the following notation and definitions:

FP ™ FP

forewarning window

I1l. CHANNEL-CONSISTENTFOREWARNING

positives (FPs), and false negatives (FNs), defined with respect dataset number;

to the same preset forewarning window, as shown in Fig. 1.7 channel number with forewarnind < j < 19);
The horizontal axis represents time,The thick vertical line & patient number;

at T'sz denotes the seizure onset time. The thin vertical linesM (k)  number of datasets for thgh patient;

delimit the forewarning-time window]}; < t < 15 < Tsz. P number of patients with multiple datasets;

For illustration, a “reasonable” forewarning window is set 7'N;;, one for TN indication;
with the limits: T} = Tsz — 60 min and7y = Tsz — 1 min. zero for false negative indication;
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Fig. 2. Variation of the channel-consistent total-true vajue, (a) f+ versusS (number of PS symbols) fet = 2,w = 62, N = 22 000; (b) largestf+ versus
d (number of PS dimensions) far = 62, N = 22000 using equiprobable symbols (solid curve) and uniform symbols (dash-dot curvé); (@rsusw (half
width of the artifact-filter window in time steps) fet = 2, S = 20, N = 22000; (d) fr versusN/1000 (thousands of data points in each cutset)dcr 2,

S = 20, andw = 54; and (e)f, versus\ (time delay for PS reconstruction in time steps)doe 2,5 = 20,w =5

denoted by an asterigk ) in each subplot. See text for discussion.

TP;j, one for a TP indication;

zero for a FP indication.

4, N = 22000. The chosen maximum is

then patients with only one dataset would have been
improperly weighted the same as patients with several

The subscript, #jk” denotes thgth channel of théth dataset datasets). We computed the renormalized PSDM for each
for the kth patient. The total-true rate for théh channel of the dataset, and then exhaustively searched dNgec and Uc

kth patientisT;, = ;[T Pijr+T N; ], by summing ovei = 1

to find the largestfr value.

to M (k). The occurrence of more than one TP(s) and/or TN(s)

inthejth channel is indicated d¥;;, > 2, while7;;, < 1 means

that thejth channel provides no consistency with other dataset
for the same patient. Then, we define the channel overlap as

Cr = max(Tjk), for Tjk > 2 andk fixed
=0, for Tjk <1.

The channel-consistent total-true rate isfr =
[Xrcx]/[ZxM(k)], where the index,k, sums over allP

IV. RESULTS

SWe searched over seven parameters to maxirfyiz®©ur ex-
perience [20]-[23] shows a huge reduction in the computational
effort by varying one parameter at a time while holding the
others fixed. Indeed, a sequence of single parameter searches
avoids the dimensionality curse of an exhaustive search at the
expense of a suboptimal, but quite acceptable result. After deter-
mination of these parameters, the forewarning analysis is much

patients, weighting each dataset equally. (If we had defined thaster than the data-recording time. We present the results of this

channel-consistent total-true rate[&% max (T;,)/M(k)]/P,

search next.
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Fig. 3. The occurrence frequency of the channel-consistent forewarning time (in arbitrary units) versus time (in minutes) prior to the seizvhiEkwaturs
at time,t = 0.

We first optimized over the parameter pafrS,d}, con- Additional parameters are available for optimization. We set
strained by a computational limit on the numeric labels faf = 2 andS = 20 (equiprobable symbols) while varying the
the CPS bins using modular arithmetic. This limit arises frommalf-width of the artifact filter windowy, as shown in Fig. 2(c).
the largest double-precision real number that can be distWe find thatfr is a noisy function ofv with a maximum value
guished from one unit larges?? < 252, yielding the limit, of fr = 0.8833 at two places. We choose = 54 for the
d < INT(26 In2/1n S). Two PS symbolgS = 2) limit the next parameter scan, because a slight trend for Igfgdies in
search t® < d < 26; three PS symbol&S = 3) correspond to that region. Fig. 2(d) displaygr versus the number of points in
2 < d < 16; and so forth. Since equiprobable symbols alwaysach cutestly, in increments of 1000 with the other parameters
yield larger values foifr, we performed the analysis using thidixed atS = 20, d = 2, andw = 54. This plot shows that
symbolization. Fig. 2(a) showgr as a noisy function of the fr rises nonmonotonically with increasing cutset length to a
number of equiprobable symbols, with the number of PS di- noisy plateau fofV > 21 000. The largest valuefr = 0.8833,
mensionsd = 2. The largest channel-consistent total-true rateccurs three times. We chosé= 22 000, becausg tends to
is fr = 0.8667 at S = 20 and.S = 26. We next obtained the be larger in that region. All of the above analysis uses a time
largest value off versus the number of equiprobable symboldelay that is based on the first minimu/, in the mutual
for each value of PS dimension in the rangies d < 26. These information function A = INT[0.5 + M;/(d — 1)]. This lag
results are displayed as the solid curve in Fig. 2(b), showitgrns out to be different for every channel of each dataset. Thus,
that f decreases nonmonotonically from a maximuni & 2 we can considef as another parameter in the optimization.
to a minimum atd = 17 or 18, and then rises somewhat forFig. 2(e) illustrates the variation gfr versus), which is set
still larger values ofl. For completeness, Fig. 2(b) also showto the same value for every channel of every dataset, yielding
similar analysis only for an even number of uniform symbola maximum offr = 0.9 at A\ = 17 with the other parameter
(dash-dot curve), because the central bin for an odd numbetues set as followss = 20, d = 2, w = 54, andN = 22 000.
of uniform symbols accumulates the vast majority of the PS We searched over two other parameters for completeness. We
points, thus degrading the results in every case. Based on thesmged the number of base cases in the range; B < 20,
results, further analysis for uniform symbols is unnecessary. and obtained a largegt: = 0.9 for B = 10. This value is
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Fig. 4. Linear measures and renormalized PSDM for a TN (channel F8 of dataset 37 for patient 11) versus time: (a) f@inimuand maximum( ¢, )

values of the artifact-filtered EEG; (B)(x2); () U(x?); (d) U(L); and (e)U(L.). The indication threshol@’~ = 0.012) is shown as the solid horizontal line
at the bottom of (b)—(e); see text for discussion.

-2

the same as before. The above analysis also has an inter-synti®lprevious value of; = 0.68 [23]. Our best result yields 29
lag, u = 1, for the connected phase-spag€,) — y(i + u), as trues for patients with a single dataset: 23 TPs, six TNs, one FP,
described previously. We searched over the rahgey < 20.  and no false negatives. This result also includes 25 channel-con-
The maximum isfr = 0.9 aty = 1, which also is the same assistent trues for patients with multiple datasets: 12 TPs, 13 TNs,
before. A second series of single parameter searchesSouer 4.47 FPs, and 0.53 false negatives. The noninteger values arise
andN did not find a largerfr. Moreover, an exhaustive searcHrom two event datasets from patient 69 that have inconsistent
overls < § < 25and12 < X < 22 did not improvefr or false results for every channel, for which the falses were av-
with the other parameters fixed as before. Thus, we obtain theged across all channels for both datasets. A channel with a
maximum channel-consistent total-true ratefef = 0.9 for FP (negative) in one dataset and a TP in the other dataset was
S=20,d=2,A=17,w =54, N = 22000, B =10, » = 1. counted as two FPs (negatives). The total number of FPs is 5.47,
We next discuss this best result in more detail. or 0.021 FPs per hour (mean time between FPs of 47.7 h). The
This retrospective analysis shows that substantial improuetal number of TP datasets is 35 out of 40 (87.5%). Fig. 3 shows
ment in the rate of channel-consistent total trues is possible ottee occurrence frequency of the channel-consistent forewarning
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Fig. 5. Linear measures and renormalized PSDM for a TP (channel P4 of dataset 207 for patient 83) versus time: (a) (ginimwmd maximun gmax)
values of the artifact-filtered EEG; (8] (x?); (c) U(x?2); (d) U(L); and (e)U(L.). The indication threshol{’c = 0.012) is shown as the solid horizontal
line at the bottom of (b)—(e). The epileptic event is denoted by the vertical bar at 23 760 s in each subplot. The dashed line (- -) at 21 032 s showsithg forew
indication. See text for discussion.

times, relative to the seizure event onset, in intervals of 600 s ({hdly after 16 000 s) that provide no insight. The large values of
min). These forewarning times are consistent with the seizuttee PSDM after 21 000 s were diagnosed independently by the
event forewarning zone, with an inclusive range of 60—3,588ysician as a nonseizure event, for which the method correctly
an average of 2,095 s, and a standard deviation of 905s.  shows no forewarning. The infrequent occurrence of all four
Fig. 4 is an example of a TN (no forewarning when no eveSDM [Fig. 4(b)—(e)] below the indication threshdllx =
occurred) with the same parameters as the best result, abov&l2) is the feature that allows the method to avoid a FP indi-
This dataset spans 23056 s (6 h and 24 min) and is one of feation.
for patient 11, with each of the other three datasets having arfig. 5 is an example of a TP (forewarning when an event oc-
epileptic event. Three of the four datasets had a correct inditrred) with the same parameters as the best result, above. This
cation (TN for dataset 37 and TPs for datasets 125 and 18tBtaset spans 29 656 s (8 h and 14 min) and is the only dataset
in channel F8, which is the channel displayed in this figuréor patient 83. This figure shows data for channel P4 with a
Fig. 4(a) shows many large amplitude EEG extremes (particseizure event at 23760 s. The many large amplitude EEG ex-
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tremes [Fig. 5(a)] provide no forewarning and no indication afne cutset behind real-time. If statistically based parameters for
the epileptic event. Three of the four PSDM have maximal peattee forewarning analysis give an excessive FP rate, then the pa-
at the seizure event [Fig. 5(b)—(e)]. The presence of infrequeatmeters could be set via a patient-specific analysis if at least
small-dissimilarity states before 16 000 s avoided a prematues seizure events occurred during clinical monitoring. If the
(FP) forewarning. The absence of small-dissimilarity states fekisting base case data yield an excessive false hourly rate, then
54 cutsets after 16 000 s allowed the method to give a for@new base case could be acquired subsequently, and/or at pe-
warning at 21032 s (2728 s of forewarning time prior to theodic intervals. This scenario has many uncertainties, based on
event). the present state of our research.
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