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Channel-Consistent Forewarning of Epileptic Events
from Scalp EEG

Lee M. Hively* and Vladimir A. Protopopescu

Abstract—Phase-space dissimilarity measures (PSDM) have
been recently proposed to provide forewarning of impending
epileptic events from scalp electroencephalographic (EEG) for
eventual ambulatory settings. Despite high noise in scalp EEG,
PSDM yield consistently superior performance over traditional
nonlinear indicators, such as Kolmogorov entropy, Lyapunov
exponents, and correlation dimension. However, blind application
of PSDM may result in channel inconsistency, whereby multiple
datasets from the same patient yield conflicting forewarning indi-
cations in the same channel. This paper presents a first attempt
to solve this problem.

Index Terms—Dynamical systems, epileptic seizure forewarning,
nonlinear analysis, phase-space dissimilarity measures.

I. INTRODUCTION

H ANS BERGER discovered electrical activity from the
cerebrum in 1923 as electroencephalographic (EEG)

signals. These signals have several distinct waves of different
amplitudes and frequencies that characterize various processes,
such as sleep, rest, wakefulness, pathologies, etc. Specific
EEG patterns convey a standard of normality, while deviations
from this standard indicate abnormality. The interpretation of
time-serial EEG data is severely hindered by the lack of an
adequate model of the central nervous system that is consistent
with these observations. In 1970, Hjorth introduced three
parameters (activity, mobility, and completeness) to describe
and quantify the EEG signal in the spatio-temporal domain
[1]. Soon thereafter, significant advances in nonlinear and
chaotic dynamics [2]–[6] (and references therein) suggested
a new framework for analyzing and possibly modeling brain
activity as a nonlinear dynamical system. The seminal work of
Babloyantzet al. [7] seemed to indicate that EEG data have de-
terministic features that are intertwined with noise to produce a
wide variety of behaviors, including chaotic behavior. Although
a few dissenting opinions have challenged this perspective
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[8], our working hypothesis for epileptic phenomena is that
indeed the brain behaves as a reasonably low-dimensional
dynamical system with regimes varying between (quasi-) pe-
riodic and completely irregular (chaotic). Thus, interpretation
of biomedical (in particular, EEG) data within this framework
becomes both legitimate and fruitful, with global aspects
of brain dynamics being quantified by traditional nonlinear
measures such as Lyapunov exponents, Kolmogorov entropy,
and correlation dimension [2]–[6]. While these descriptors
discriminate adequately between clear-cut regular and chaotic
dynamics, they are not sufficiently sensitive to distinguish
between slightly different chaotic regimes, especially when
data are limited and/or noisy. Most brain dynamics during
the transition from normal activity to the seizure event and
postseizure recovery fall into the latter regime, making robust
and timely forewarning of epileptic events an outstanding
medical challenge.

Epilepsy afflicts about three-million people in the U.S.
alone. Epilepsy can be effectively treated in many instances,
and many patients are indeed under constant medication. How-
ever, constant medication frequently has severe side effects
that may be more debilitating than the seizures themselves.
Moreover, 10%–30% of the cases cannot be controlled by
medication. In addition, some extreme epileptic events require
immediate medical intervention to avoid sudden unexplained
death in epilepsy (SUDEP), which is characterized by fatal
cardiac rhythm disturbances and injuries during seizures. In
general though, while most seizures are not life threatening or
even serious medical events, they represent an unpredictable
source of social nuisance, disruption, and embarrassment. For
some patients with a history of only partial seizures, a reliable
forewarning device may offer a new treatment paradigm of
constant monitoring rather than continuous medication. Such
forewarning would allow the patient to interrupt hazardous
activity, lie down in a quiet place, undergo the seizure, and
then return to normal activity. Other timely preventive steps
include taking medication, requesting emergency responders,
or contacting the physician. For most patients though, we
expect that a seizure forewarning device would more likely be
used to complement medications, rather than replacing it.

Successful seizure forewarning requires a detailed examina-
tion of the brain dynamics. Le Van Quyenet al. [9] review re-
cent research on nonlinear analysis of brain signals that pre-
cede epileptic events. Lehnertzet al. [10] detect preevent indi-
cations in certain nonlinear measures of neural complexity, such
as correlation dimension, interdependence, and mean phase co-
herence. Savitet al. [11] use a measure closely related to cor-
relation integrals that detect changes tens of minutes prior to
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an event. Jergeret al. [12] compare seven linear and nonlinear
measures and find changes occurring one to two minutes before
the event. Osorioet al. [13] show that the correlation integral
and the correlation dimension depend on the EEG frequency
and amplitude, implying that changes in the former are due to
trivial changes in the latter. Sunderamet al. [14] chemically in-
duce seizures in rats and use a stochastic Markov chain model
to predict the interictal duration, , from the seizure duration,

, and vice-versa. Littet al. [15] show that the energy in EEG
increases as the seizure approaches. These results are mostly
based onintracranial EEG.

We propose the use ofscalpEEG, which is much less inva-
sive than intracranial data. While various approaches for seizure
forewarning based on intracranial EEG have met with measur-
able degrees of success, scalp EEG has resisted previous ef-
forts due to: 1) attenuation of the meaningful signal through
bone and soft tissue and 2) high noise contamination, due to
eye blinks and other muscular artifacts. Our initial analysis of
scalp EEG used traditional nonlinear measures (TNM), such
as Kolmogorov entropy, correlation dimension, and Lyapunov
exponents, and yielded inconsistent detection and forewarning
of the epileptic events [16]. Those results indicated that detec-
tion of meaningful information in attenuated, noisy, artifact-in-
fested signals requires more sensitive and discriminating mea-
sures. Our more recent work showed by direct comparison that
phase-space dissimilarity measures (PSDM) have consistently
better sensitivity and discrimination power for forewarning of
epileptic events than TNM [17]–[22]. The reason for this im-
provement is rather simple: discrimination by TNM is based
on a difference of averages, while discrimination via PSDM is
based on averaging the absolute value of pointwise differences.
Our most recent work [23] yielded very encouraging results for
event forewarning that is independent of patients’ age or sex,
event onset time, preevent activity, awake- versus asleep-state
basecase, and—to a large extent—of data quality. However, our
detailed analysis found inconsistent forewarning in the same
channel across multiple datasets from the same patient [23].
This inconsistency arose because in our previous studies only
total trues were maximized [17]–[23].

Channel-consistent total trues are a much more stringent mea-
sure of forewarning performance, which this present work ad-
dresses by: 1) formulating a quantitative measure of channel
consistency in both true positives (TPs) and true negatives (TNs)
for multiple datasets from each of several patients; 2) measuring
forewarning performance in terms of channel-consistent total
trues; 3) developing a methodology to maximize this perfor-
mance measure; and 4) showing that these improvements raise
the channel-consistent total trues substantially. The following
sections discuss the phase-space methodology, channel-consis-
tent forewarning, and the results of our analysis. The last section
presents our conclusions.

II. PHASE-SPACE METHODOLOGY

We begin this section with an overview of the PSDM. The
long stream of time-serial archival scalp EEG data is first di-
vided into contiguous, nonoverlapping windows (cutsets) of
data points. Each channel of every cutset is analyzed as follows.

The artifact signal is removed with a novel zero-phase quadratic
filter. Then by standard reconstruction of the dynamics [2], the
artifact-filtered data is converted into a phase space (PS) rep-
resentation, which in turn is transformed to a statistical distri-
bution function (DF). Our underlying assumption is that the
complex, high-dimensional brain dynamics evolve mostly over
a bounded, low-dimensional region of the PS, called an “at-
tractor.” Thus, for sufficiently long datasets, the DF captures
a statistical representation of the brain activity in the form of
an invariant measure on the attractor. If dynamical conditions
change, so will the attractor itself as mirrored by the invariant
DF on the attractor. The DFs from the first ten cutsets are used as
base cases to represent nonseizure dynamics. Our earlier work
found that a few of these base case cutsets may be atypical,
causing a bias in the detection of condition change [22], [23].
The base case DFs were exhaustively compared to one another
in pair-wise fashion to identify outliers, which were removed
from the analysis as unrepresentative of the nonseizure state
[22], [23]. As discussed below, the present work finds that this
removal of outliers is unnecessary. Next, each test case DF is
compared to all of the base case DFs to obtain an average con-
dition change between the base- and test-case states. A fore-
warning indication of an epileptic event (TP) is obtained in any
one channel when all four PSDM exceed a threshold for a spec-
ified number of successive occurrences. No forewarning in a
nonevent dataset corresponds to a TN. Finally, channel-con-
sistency (the focus of the present work) requires that TP and
TN indications occur in the same channel(s) across multiple
datasets from the same patient. This complete analysis is re-
peated for every dataset. We use all of the datasets as a training
set, which clearly limits the strength of our conclusions. How-
ever, the alternative of splitting 30 datasets into equally sized
training and test sets would have provided only 15 datasets for
the channel-consistency training analysis, which we deemed to
be insufficient on statistical grounds. The remainder of this sec-
tion provides methodological details for all of these steps.

EEG data were acquired as part of standard epilepsy
monitoring of each patient for several days to two weeks
under standard clinical protocols. Recordings came from
32-channel Biomedical Monitoring Systems Inc. instruments
(Nicolet-BMSI, Madison, Wisconsin) with 19 scalp electrodes
in the International 10–20 systems of placement as referenced
to the ear on the opposing hemisphere. Each channel of scalp
potential was amplified separately, band-pass filtered between
0.5–99 Hz, and digitized at 250 Hz. The data were archived
on VHS tapes, which limited the maximum record length
to slightly more than eight hours. The attending physicians
independently selected the data for our analysis from this
archive. Their sole selection criterion was that the data were
“representative” of the patients’ medical condition, without
regard to the presence (or absence) of artifacts or other noise.
In addition, we required that each dataset be greater than one
hour long to assure adequate data for our analysis. We also
required that event datasets include a baseline period of at
least two hours, as well as the entire event (ictal) segment. The
physician’s characterization of this data covered only the time
interval corresponding to the dataset. Analysis of this selected
data represents only a fraction of the total monitoring periods,
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and in principle limits the generality of our results. Analysis of
the full monitoring periods is beyond the scope of this work.

We retrospectively analyzed 60 scalp EEG datasets: 40 with
at least one electrographic temporal lobe event, plus 20 without
epileptic events as controls. The attending physician character-
ized each dataset, as follows: patient’s sex and age; start and stop
time of the data recording; onset time of the seizure event; the
type of seizure; the active electrode; and the patient’s activity at
the start of the recording and immediately prior to the event. Our
earlier work [23, Table 1] summarizes the dataset characteriza-
tions, and will not be repeated here. The data were obtained from
41 different patients with ages between 4 and 57 years. Half of
the patients have only a single dataset. The other 30 datasets
are from 11 different patients with multiple datasets: seven pa-
tients with two datasets, one patient with three datasets, two pa-
tients with four datasets, and one patient with five datasets. Our
analysis begins at the start of each dataset, and ends with the
last full cutset in the dataset or with the cutset that includes the
first event (whichever comes first). The dataset lengths range
between 5016 s (1 h and 23 min) and 29 656 s (8 h and 14 min),
with an average length of 15 668 s (4 h and 21 min). The cumu-
lative period of the analysis is 940 104 s (261 h and 8 min). We
analyze all 19 EEG channels in each dataset.

We remove eye blink artifacts from scalp EEG with a zero-
phase quadratic filter [16] that is more efficient than conven-
tional linear filters. This filter uses a moving window of data
points, , with the same number of data points,, on either side
of a central point. We fit a quadratic curve in the least-squares
sense over this window, taking the central point of the fit as the
low-frequency artifact, . The residual value, , has
essentially no low-frequency artifact activity. All subsequent
analysis uses artifact-filtered data.

We next convert each artifact-filtered value into a symbolized
form, , that is one of different integers.
We use contiguous, nonoverlapping partitions to obtain these
symbols, as follows: for ;
for for ;
and for . Here, and
denote the minimum and maximum values of, respectively,
over the base case data. One specific approach creates symbols
with a uniform distribution of partitions between the minimum
and maximum in signal amplitude (uniform symbols)

(1)

The function converts a decimal number to the closest
lower integer. To maintain distinct symbols, we require that

, when . Alternatively, one can use
equiprobable symbols, by ordering all base case data points
from the smallest to largest value. The first of these ordered
data values correspond to the first symbol, 0, by choosing an ap-
propriate value for . Ordered data values through

correspond to the second symbol, 1, and so on up to the
last symbol, . For example, construction of 20 equiprobable
symbols from 20 000 data points takes the first 1000 points in
rank order as the first symbol, 0. The second 1000 points in rank
order are the second symbol, 1, and so on up to the last symbol,
19. By definition, equiprobable symbols have nonuniform par-

titions in signal amplitude and have the advantage that dynam-
ical structure arisesonlyfrom the PS reconstruction (see below).
Moreover, large negative and/or positive values ofhave little
effect on equiprobable symbolization, but significantly change
the partitions for uniform symbols. Consequently, we find that
equiprobable symbols provide better discrimination of condi-
tion change than uniform symbols, as discussed in the results
section.

PS reconstruction [2] converts the data into a geometric form
via time-delay vectors, , which
unfold the underlying dynamics. Typically, the delay,, and
system dimensionality,, are related by , where

the first minimum in the mutual information function. For
a given , we set to obtain an in-
teger value for the lag when is not evenly divisible by .
Symbolization divides the PS into bins. The DF is a dis-
cretized density on the attractor, which is obtained by counting
the number of points that occur in each PS bin. We denote the
population of theth bin of the DF, , for the base case, and
for a test case, respectively. We compare the test case to the base
case by measuring the difference betweenwith [17]–[23]
as

(2)

(3)

where the summations run over all of the populated PS cells.
These measures account for changes in the geometry, shape, and
visitation frequency of the attractor, and are somewhat comple-
mentary. The measure is one of the most powerful, robust,
and widely used comparison between observed and expected
frequencies. In this context, is arelativemeasure [20] of dis-
similarity, rather than a distance in the mathematical sense or
an unbiased statistic for accepting or rejecting a null statistical
hypothesis. The distance is the natural metric for DFs by its
direct relation to the total invariant measure on the attractor and
defines a bona fide distance. Consistent calculations obviously
require the same number of points in both the base case and test
case DFs, identically sampled; otherwise the DFs must be prop-
erly rescaled.

We extend the PS reconstruction by connecting successive PS
points for the dynamical flow, . Thus, we ob-
tain [22] a discrete representation of the process flow [4] in the
form of a -dimensional vector, , that is
formed by adjoining two successive vectors from the-dimen-
sional reconstructed PS. We call the connected PS (CPS).
As before, and denote the CPS DFs for the base case and
test case, respectively. We then define the PSDM between these
two CPS DFs via the -distance and statistic, as before [22],
[23]

(4)

(5)

The subscript denotes measures of the CPS DF. The first sub-
script in (4) and (5) is a label for the initial PS state, . The
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second subscript in these equations is a label for the sequel PS
state, . The CPS measures have higher discriminating
power than their nonconnected counterparts. Indeed, we can
prove [22] that the (C)PS measures defined in (2)–(5) satisfy
the following inequalities: , , , and

.
We use the first nonoverlapping, contiguous windows of
points (cutsets) from each channel of each dataset as base

cases. Our earlier work found that a few of these base case cut-
sets may be atypical, causing a bias in the detection of condition
change [22], [23]. The base case DFs were exhaustively com-
pared to one another in pair-wise fashion to obtain the mean
base-case dissimilarity, , and a corresponding standard devi-
ation, Here, denotes each dissimilarity measure from the
set, and . A chi-squared statistical test
was used to identify outlier cutsets, which were removed from
the analysis as unrepresentative of the nonseizure state [22],
[23]. A test of this approach for the present analysis yields 54
channel-consistent-total trues over all 60 datasets without out-
lier removal, versus 44 channel-consistent-total trues with out-
lier removal for the best parameters in the results section. Con-
sequently, all of the below analysis is done without removal of
outlier cutsets.

The disparate range and variability of these measures are dif-
ficult to interpret, so we need a consistent means of comparison.
To this end, we renormalized the dissimilarity measures [20],
[22], [23], as described below. We compared each of thebase
case cutsets to each (th) test case cutset, and obtained the cor-
responding average dissimilarity value,, of the th cutset for
each dissimilarity measure. As before,denotes the various
dissimilarity measures from the set, and .
The mean value, , and the standard deviation,, of the dissim-
ilarity measure are calculated using the base case cutsets, as
discussed above. The renormalized dissimilarity is the number
of standard deviations, by which the test case deviates from the
base case mean: . This renormalized dis-
similarity is used to test for statistically significant change in the
time-serial dynamics, as discussed in Section III.

III. CHANNEL-CONSISTENTFOREWARNING

Once the renormalized measures for the test and base cases
have been obtained, an arbitrary threshold,, is set for
each renormalized measure to distinguish between normal
(base) and possibly abnormal (test) regimes. The choice of a
reasonable threshold is critical for obtaining robust, accurate,
and timely results. A valid forewarning is indicated by a
specified number, , of sequential occurrences ,
within a preset forewarning window [18]–[23]. These events
are interpreted as true positive (TP). The complete statistics
also accounts for the number of true negatives, , false
positives (FPs), and false negatives (FNs), defined with respect
to the same preset forewarning window, as shown in Fig. 1.
The horizontal axis represents time,. The thick vertical line
at denotes the seizure onset time. The thin vertical lines
delimit the forewarning-time window, .
For illustration, a “reasonable” forewarning window is set
with the limits: min and min.

Fig. 1. Illustration of the forewarning window and threshold for TPs, TNs,
FPs, and FNs; see text for details.

The latter time was chosen, based on input from a physician
collaborator that even with one minute of forewarning, he could
do useful things to help the patient medically [24]. The vertical
axis corresponds to a renormalized dissimilarity measure,,
as discussed above. The horizontal dashed line (—) shows the
threshold, . We define aforewarning time in one channel,

, as that time when the number of simultaneous indica-
tions, , among the four dissimilarity measures exceeds
some minimum value. The best elimination of FPs occurs for
a value of . Analysis starts at , and proceeds
forward in time until the first forewarning occurs, as defined
above. The algorithm then obtains the forewarning statistics
by the following ordered sequence of logical tests for each
channel:

forewarning at any time, when no seizure occurs, or
forewarning with , or ;
forewarning with ;
no forewarning, when no seizure occurs;
no forewarning for .

We denote theth dataset as if at least one channel shows
forewarning in the desired window, . This as-
signment is equivalent to for the below summations. A

dataset shows no forewarning in at least one channel when
no seizure occurs, corresponding to for the below
summations. The total true rate is ,
where the sum runs over all datasets. The corresponding total
false rate is . This approach allows selection of an
appropriate channel for subsequent forewarning, consistent with
the previous medical characterization.

Improvement in the channel-consistent total-true rate is car-
ried out by maximizing an objective function that measures a
combination of the total true rate for any one channel,as well
as channel consistency. To quantify channel consistency, we in-
troduce the following notation and definitions:

dataset number;
channel number with forewarning ;
patient number;
number of datasets for theth patient;
number of patients with multiple datasets;
one for TN indication;
zero for false negative indication;
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Fig. 2. Variation of the channel-consistent total-true value,f : (a)f versusS (number of PS symbols) ford = 2,w = 62,N = 22000; (b) largestf versus
d (number of PS dimensions) forw = 62,N = 22000 using equiprobable symbols (solid curve) and uniform symbols (dash-dot curve); (c)f versusw (half
width of the artifact-filter window in time steps) ford = 2, S = 20,N = 22000; (d) f versusN=1000 (thousands of data points in each cutset) ford = 2,
S = 20, andw = 54; and (e)f versus� (time delay for PS reconstruction in time steps) ford = 2, S = 20,w = 54,N = 22000. The chosen maximum is
denoted by an asterisk( ) in each subplot. See text for discussion.

one for a TP indication;
zero for a FP indication.

The subscript, “ ” denotes theth channel of theth dataset
for the th patient. The total-true rate for theth channel of the

th patient is , by summing over
to . The occurrence of more than one TP(s) and/or TN(s)
in the th channel is indicated by , while means
that the th channel provides no consistency with other datasets
for the same patient. Then, we define the channel overlap as

for and fixed

for

The channel-consistent total-true rate is,
, where the index, , sums over all

patients, weighting each dataset equally. (If we had defined the
channel-consistent total-true rate as ,

then patients with only one dataset would have been
improperly weighted the same as patients with several
datasets). We computed the renormalized PSDM for each
dataset, and then exhaustively searched over and
to find the largest value.

IV. RESULTS

We searched over seven parameters to maximize. Our ex-
perience [20]–[23] shows a huge reduction in the computational
effort by varying one parameter at a time while holding the
others fixed. Indeed, a sequence of single parameter searches
avoids the dimensionality curse of an exhaustive search at the
expense of a suboptimal, but quite acceptable result. After deter-
mination of these parameters, the forewarning analysis is much
faster than the data-recording time. We present the results of this
search next.
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Fig. 3. The occurrence frequency of the channel-consistent forewarning time (in arbitrary units) versus time (in minutes) prior to the seizure event, which occurs
at time,t = 0.

We first optimized over the parameter pair, , con-
strained by a computational limit on the numeric labels for
the CPS bins using modular arithmetic. This limit arises from
the largest double-precision real number that can be distin-
guished from one unit larger: , yielding the limit,

. Two PS symbols limit the
search to ; three PS symbols correspond to

; and so forth. Since equiprobable symbols always
yield larger values for , we performed the analysis using this
symbolization. Fig. 2(a) shows as a noisy function of the
number of equiprobable symbols,, with the number of PS di-
mensions, . The largest channel-consistent total-true rate
is at and . We next obtained the
largest value of versus the number of equiprobable symbols
for each value of PS dimension in the range, . These
results are displayed as the solid curve in Fig. 2(b), showing
that decreases nonmonotonically from a maximum at
to a minimum at or , and then rises somewhat for
still larger values of . For completeness, Fig. 2(b) also shows
similar analysis only for an even number of uniform symbols
(dash-dot curve), because the central bin for an odd number
of uniform symbols accumulates the vast majority of the PS
points, thus degrading the results in every case. Based on these
results, further analysis for uniform symbols is unnecessary.

Additional parameters are available for optimization. We set
and (equiprobable symbols) while varying the

half-width of the artifact filter window, , as shown in Fig. 2(c).
We find that is a noisy function of with a maximum value
of at two places. We choose for the
next parameter scan, because a slight trend for largerlies in
that region. Fig. 2(d) displays versus the number of points in
each cutest, , in increments of 1000 with the other parameters
fixed at , , and . This plot shows that

rises nonmonotonically with increasing cutset length to a
noisy plateau for . The largest value, ,
occurs three times. We chose , because tends to
be larger in that region. All of the above analysis uses a time
delay that is based on the first minimum, , in the mutual
information function, . This lag
turns out to be different for every channel of each dataset. Thus,
we can consider as another parameter in the optimization.
Fig. 2(e) illustrates the variation of versus , which is set
to the same value for every channel of every dataset, yielding
a maximum of at with the other parameter
values set as follows: , , , and .

We searched over two other parameters for completeness. We
varied the number of base cases in the range, ,
and obtained a largest for . This value is
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Fig. 4. Linear measures and renormalized PSDM for a TN (channel F8 of dataset 37 for patient 11) versus time: (a) minimum(g ) and maximum(g )
values of the artifact-filtered EEG; (b)U(� ); (c)U(� ); (d)U(L); and (e)U(L ). The indication threshold(U = 0:012) is shown as the solid horizontal line
at the bottom of (b)–(e); see text for discussion.

the same as before. The above analysis also has an inter-symbol
lag, , for the connected phase-space, , as
described previously. We searched over the range, .
The maximum is at , which also is the same as
before. A second series of single parameter searches over, ,
and did not find a larger . Moreover, an exhaustive search
over and did not improve
with the other parameters fixed as before. Thus, we obtain the
maximum channel-consistent total-true rate of for

, , , , , , .
We next discuss this best result in more detail.

This retrospective analysis shows that substantial improve-
ment in the rate of channel-consistent total trues is possible over

the previous value of [23]. Our best result yields 29
trues for patients with a single dataset: 23 TPs, six TNs, one FP,
and no false negatives. This result also includes 25 channel-con-
sistent trues for patients with multiple datasets: 12 TPs, 13 TNs,
4.47 FPs, and 0.53 false negatives. The noninteger values arise
from two event datasets from patient 69 that have inconsistent
or false results for every channel, for which the falses were av-
eraged across all channels for both datasets. A channel with a
FP (negative) in one dataset and a TP in the other dataset was
counted as two FPs (negatives). The total number of FPs is 5.47,
or 0.021 FPs per hour (mean time between FPs of 47.7 h). The
total number of TP datasets is 35 out of 40 (87.5%). Fig. 3 shows
the occurrence frequency of the channel-consistent forewarning
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Fig. 5. Linear measures and renormalized PSDM for a TP (channel P4 of dataset 207 for patient 83) versus time: (a) minimum(g ) and maximum(g )
values of the artifact-filtered EEG; (b)U(� ); (c) U(� ); (d) U(L); and (e)U(L ). The indication threshold(U = 0:012) is shown as the solid horizontal
line at the bottom of (b)–(e). The epileptic event is denoted by the vertical bar at 23 760 s in each subplot. The dashed line (- -) at 21 032 s shows the forewarning
indication. See text for discussion.

times, relative to the seizure event onset, in intervals of 600 s (10
min). These forewarning times are consistent with the seizure
event forewarning zone, with an inclusive range of 60–3,588 s,
an average of 2,095 s, and a standard deviation of 905 s.

Fig. 4 is an example of a TN (no forewarning when no event
occurred) with the same parameters as the best result, above.
This dataset spans 23 056 s (6 h and 24 min) and is one of four
for patient 11, with each of the other three datasets having an
epileptic event. Three of the four datasets had a correct indi-
cation (TN for dataset 37 and TPs for datasets 125 and 131)
in channel F8, which is the channel displayed in this figure.
Fig. 4(a) shows many large amplitude EEG extremes (particu-

larly after 16 000 s) that provide no insight. The large values of
the PSDM after 21 000 s were diagnosed independently by the
physician as a nonseizure event, for which the method correctly
shows no forewarning. The infrequent occurrence of all four
PSDM [Fig. 4(b)–(e)] below the indication threshold

is the feature that allows the method to avoid a FP indi-
cation.

Fig. 5 is an example of a TP (forewarning when an event oc-
curred) with the same parameters as the best result, above. This
dataset spans 29 656 s (8 h and 14 min) and is the only dataset
for patient 83. This figure shows data for channel P4 with a
seizure event at 23 760 s. The many large amplitude EEG ex-
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tremes [Fig. 5(a)] provide no forewarning and no indication of
the epileptic event. Three of the four PSDM have maximal peaks
at the seizure event [Fig. 5(b)–(e)]. The presence of infrequent
small-dissimilarity states before 16 000 s avoided a premature
(FP) forewarning. The absence of small-dissimilarity states for
54 cutsets after 16 000 s allowed the method to give a fore-
warning at 21 032 s (2728 s of forewarning time prior to the
event).

V. DISCUSSION

As substantiated by the results in Figs. (2)–(5) and in our pre-
vious work [17]–[23], we view the present approach as encour-
aging and worthy of further development despite several limi-
tations, which we discuss next. First, the present analysis uses
all of the data as a training set, limiting the strength of our con-
clusions. However, the alternative of splitting 30 datasets into
equally sized training and test sets would have provided only
15 datasets for the channel-consistency training analysis, which
would have resulted in weak statistics. Second, we analyze EEG
data from a controlled clinical setting, which differs from an
uncontrolled, ambulatory environment. Third, we define fore-
warning as a TP indication in at least one channel, which is a
rather weak criterion. Fourth, our results depend on careful ad-
justment of the analysis parameters for the best rate of TPs plus
TNs. Fifth, we analyze only portions of the patient data, as se-
lected by the attending physician, rather than the full monitoring
period. Sixth, the present results are limited by our analysis of
only 60 datasets (40 with epileptic events). Much more data
(hundreds of datasets spanning more than 1000 h) are needed for
an optimal choice of the analysis parameters and for a definitive
statistical demonstration of the effectiveness of our approach.
These data requirements are far beyond our present capabili-
ties, and almost everyone else’s, based on published results to
date. Seventh, we have not performed prospective analysis of
long-term continuous data, which is the acid test for any pre-
dictive approach. Clearly, much work remains to address these
issues. In this light, we view the importance of the present work
as the methodology and search strategy for channel-consistent
forewarning, rather than in the specific results.

We anticipate that a practical ambulatory (prospective) fore-
warning device would involve the following. The analysis pa-
rameters would be chosen, based on a statistical analysis of
many datasets, and then fixed for subsequent patient monitoring.
An individual patient would undergo epilepsy monitoring for
several days to two weeks under standard clinical protocols. The
complete data record of this monitoring would be analyzed with
the PSDM methodology to determine the best channel(s) for
forewarning. This analysis would also provide the number of
false negatives and the hourly rate of FPs. If this false rate is ac-
ceptable, then the patient would be fitted for electrodes in a wig
or cap, which would be worn continuously for forewarning. The
initial patient setup would assure that the patient is awake during
the scalp electrode setup by medical personnel, who would then
explain the device and its use to the patient and/or the caregiver
while the base case is acquired for several minutes. The analysis
of one cutset of data would only proceed after being written to
the computer harddrive or memory, and thus would be at least

one cutset behind real-time. If statistically based parameters for
the forewarning analysis give an excessive FP rate, then the pa-
rameters could be set via a patient-specific analysis if at least
ten seizure events occurred during clinical monitoring. If the
existing base case data yield an excessive false hourly rate, then
a new base case could be acquired subsequently, and/or at pe-
riodic intervals. This scenario has many uncertainties, based on
the present state of our research.
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