Profiling Users: Insider Threat Detection and Prevention

Veronica Young
University of California, Merced
Research Alliance in Math and Science

Computational Sciences and Engineering Division, Oak Ridge National Laboratory
Mentor: Dr. Robert K. Abercrombie
http:/iwiki.ornl.gov/sites/rams09/v_young/Pages/default.aspx

Insider sourced espionage, sabotage, and fraud are now considered as the top cyber threat. Cost estimates approach $250 billion/year from modification of data, security
mechanism, unauthorized network connections, covert channels, and physical damage and destruction including information extrusion/exfiltration. Insiders have access
privileges enable them 1o easily bypass many countermeasures such as firewalls. Methods developed to counter this attack currently utilize machine learning technigues
and sensors. This project studied characteristics activities and relationships among cyber assets and players by developing a heuristic anomaly detector.
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Figure 2. Petri Net: Insider threat scenario model.
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