Asynchronous computing using CUDA on a Tesla C2050 GPU

Eduardo Ponce Mojica

Polytechnic University of Puerto Rico
Research Alliance in Math and Science
https://sites.google.com/site/eduardoponce2011

MOTIVATION

Synchronous methods for future exascale systems,
containing million of components with mean time to failure in
the order of seconds to minutes, will unavoidably result in
performance degradation. An alternative is concurrently-
asynchronous algorithms implemented in massively parallel
multithreaded and many-core general-purpose graphics
processing units (GPU), which relaxes synchronization
points produced by hardware |jitter and inherent latency.

RESOURCES

Intel Xeon X5677 CPU Tesla C2050 GPU

"mm) Device
Specifications Intel Xeon X5677 | Tesla C2050

Core count 4 448
Cores clock 3.46 GHz 1.147 GHz
Memory size 24 GB 3 GB
Memory bandwidth 32 GB/s 144 GB/s

» Compute Unified Device Architecture (CUDA)
» Fortran 95/ PVF compiler
» Microsoft Visual Studio

» NVIDIA Compute
Visual Profiler

444444
¥

L 4 [1 T & [§ [& [4 [W

Figure1. Tesla C2050 / Fermi
architecture (14 streaming
multiprocessors each with 32 cores)

A IS At v Wiy T

OBJECTIVES

1. Implement algorithms in sequential, synchronous, and
asynchronous paradigms on CPU and GPU

2. Evaluate performance of synchronous and asynchronous
schemes

3. Investigate methods for concurrently-asynchronous
computing in a CPU / GPU heterogeneous system

4. Derive techniques to optimize asynchronous computing

U.5. DEPARTMENT OF ﬁ

ASYNCHRONOUS COMPUTING

» Events that occur independently from main program flow
» Reduces idle times between processors, exploit cores

» Requires pinned (page-locked) memory on host

» Uses CUDA streams: sequence of operations in device

and host computations

12|
-- 3
. s

Time

Host to Device
GPU execution

Device to Host

Figure2. Timeline for concurrent memory transfer between CPU/GPU
and kernel execution

METHODOLOGY

» Matrix — matrix multiplication algorithm
> Complexity for square matrices: O(n’)
» Streams use different tiles in B, same tile in A

A (N x M) B (MxL)

stream 1
stream 2
stream n

Figure 3. Asynchronous scheme using
streams for matrix — matrix multiplication

» Loop begins transferring data for streams, host to device

» Each stream computes a portion of C
> Complete a C tile, transfer GPU to host, start loop

Figure 4. GPU data decomposition
into blocks and threads

___ .
» Tiles from A and B are subdivided into a grid of blocks
» Blocks are further divided into a grid of 32 x 32 threads

(32 by 32)

» Allows overlap of memory transfers, device executions,

Time

The Research Aliance i Math and Science program is sponsored by the Office of Advanced Scientific Computing Research, U.S. Department of Energy. The work was performed at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No. De-AC05-
000R22725. This work has been authored by a contractor of the U.S. Government, accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution., or allow others to do so, for U.S. Government purposes.

The author would like to thank Dr. Jacob Barhen for the opportunity to work with GPUs on the research. Additional acknowledgements go to Charlotte Kotas, Holly Wiliams, the CESAR Group. and Rashida Aslkia for their continued support.
Finally, special thanks are given to Debbie McCoy, who made provisions for this research experience along with exceptional professional support.

Mentor: Jacob Barhen

Oak Ridge National Laboratory

Center for Engineering Science Advanced Research
Collaborators: Charlotte Kotas

RESULTS AND CONCLUSIONS

Execution time versus number of streams for a
matrix-matrix multiplication (4096 x 4096)

bkl

H mber of tmm

Execution time versus matrices size
for matrix-matrix multiplication

35000
30000
25000
20000
15000
10000

SO00

all 1024
Matrices size (elemen is]

Time {m

-+ Asynchronous
-=Synchronous

L=

Figure 5. Execution time graphs for synchronous and asynchronous
matrix-matrix multiplication schemes using files

» Synchronous version execution time (4096): 36,332 ms
» Asynchronous version execution time (4096): 35,423 ms

- asyn_mmml_kemel

B aencp yHisDaE e

2126567 453334 §79701 PO6363 1132835 13503 1585969 1T536) 265670

GPL Busy e

i
d TH56T 453134 SR HH 5 L E H tH1TE 103 IIEEH
GPU Time:

Figure 6. Asynchronous computing pipeline using 4 streams shown in
NVIDIA Compute Visual Profiler, GPU idle time is reduced

» CUDA streams usage serves as a first stage to enable
concurrently-asynchronous computing

FUTURE RESEARCH

» Benchmark additional parameters, such as GPU

occupancy and memory bandwidth

» Implement common algorithms using the asynchronous
transfer-execute-transfer pipeline

» Derive conditions for convergence in an asynchronous
regime

REFERENCES

1. NVIDIA Developer Zone:
http.//developer.nvidia.com/category/zone/cuda-zone

2. Kirk, D. and Hwu, W. (2010). Programming Massively Parallel
Processors: A Hands-on Approach. USA: Elsevier, Inc.

3. Sanders, J. and Kandrot, E. (2010). CUDA by Example: An
Introduction to General-Purpose GPU Programming. Michigan,
USA: Edwards Brothers.

UT-BATTELLE

