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Outline
• Multiresolution quantum chemistry

– Objectives
– Techniques
– Capabilities
– Futures

• Higher-level composition of scientific 
applications
– Composition with functions and operators
– Coding for the highly-threaded future with futures 



6

Multiresolution chemistry objectives
• Complete elimination of the basis error

– One-electron models (e.g., HF, DFT)
– Pair models (e.g., MP2, CCSD, …)

• Correct scaling of cost with system size
• General approach

– Readily accessible by students and researchers
– Higher level of composition 
– No two-electron integrals – replaced by fast 

application of integral operators
• New computational approaches 
• Fast algorithms with guaranteed precision
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Linear Combination of Atomic Orbitals
(LCAO)

• Molecules are composed of (weakly) perturbed atoms
– Use finite set of atomic wavefunctions as the basis
– Hydrogen-like wavefunctions are exponentials 

• E.g., hydrogen molecule (H2) 

• Smooth function of
molecular geometry

• MOs: cusp at nucleus
with exponential decay
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LCAO
• A fantastic success, but …
• Basis functions have extended support

– causes scaling problems – more about this later

• Basis set superposition error (BSSE)
– incomplete basis on each center leads to over-binding 

as atoms are brought together

• Linear dependence problems
– accurate calculations require balanced approach to a 

complete basis on every atom
– molecular basis can have severe linear dependence
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Essential techniques for fast 
computation
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How to “think” multiresolution
• Consider a ladder of function spaces

– E.g., increasing quality atomic basis sets, or finer 
resolution grids, …

• Telescoping series

– Instead of using the most accurate representation, use 
the difference between successive approximations

– Representation on V0 small/dense; differences sparse
– Computationally efficient; possible insights
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0 1 0 2 1 1( ) ( ) ( )n n nV V V V V V V V −= + − + − + + −
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Scaling Function Basis
• Divide domain into 2n pieces (level n)

– Adaptive sub-division (local refinement)
– lth sub-interval [l*2-n,(l+1)*2-n] l=0,…,n-1

• In each sub-interval define a polynomial basis
– First k Legendre polynomials
– Orthonormal, disjoint support / 2
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Scaling Function Basis - III
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Multiwavelet Basis
• An orthonormal basis to span
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Vanishing moments
• Critically important property

– Since Wn=Vn+1-Vn is orthogonal to Vn the first k
moments of functions in Wn vanish, i.e., 

• Compact representation of smooth functions
– Consider Taylor series … the first k terms vanish and 

smooth implies higher order terms are small
• Compact representation of integral operators

– E.g., |r-s|-1 … interaction decays as r-2k-1

• Derivatives vanish at origin in Fourier space
– Diminishes effect of singularities at that point

 ( ) 0,  0, , 1j
ix x dx j kψ = = −∫ …
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Three equivalent representations
• Scaling function basis (reconstructed)

• Multi-wavelet basis (compressed)

• The function tabulated at the Gauss-Legendre
quadrature points in each of the adaptively 
refined boxes

'1 1 2 1 1
0 0
0 0

0 ' 0 0 0
( ) ( ) ( )

nk n k
n n n

i i il il
i n l i

f x s x d xφ ψ
− − − −

′ ′

= = = =

= +∑ ∑∑∑

2 1 1

0 0
( ) ( )

n k
n n n

il il
l i

f x s xφ
− −

= =

= ∑∑



18

Please forget about wavelets
• They are not central
• Wavelets are a convenient basis for spanning 

Vn-Vn-1 and understanding its properties
• But you don’t actually need to use them

– MADNESS does still compute wavelet 
coefficients, but Beylkin’s new code does not

• Please remember this …
– Discontinuous spectral element with multi-

resolution and separated representations for fast 
computation with guaranteed precision.
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Truncation Error
• To satisfy the global 

error condition

• Truncate according to

• Above is rather 
conservative – often use

• For accurate function 
& derivative 

22

nf f fε− ≤

/ 2
22

2n n
ld fε−≤

2

n
ld ε≤

2
2n n

ld ε−≤



20



21

Integral Formulation
• Solving the integral equation

– Eliminates the derivative operator and related “issues”
– Converges as fixed point iteration with no preconditioner
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Separated form for integral operators

• Approach in current prototype code
– Represent the kernel over a finite range as a sum of Gaussians

– Only need compute 1D transition matrices (X,Y,Z)
– SVD the 1-D operators (low rank away from singularity)
– Apply most efficient choice of low/full rank 1-D operator
– Even better algorithms not yet implemented
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Accurate Quadratures

• Trapezoidal quadrature
– Geometric precision for 

periodic functions with 
sufficient smoothness.
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Automatically generated 
representations of
exp(-30r)/r accurate to 
1e-10, 1e-8, 1e-6, 1e-4, 1e-2 
(relative error) for r in 
[1e-8,1] (92, 74, 57, 39 and 
21 terms, respectively).  

Low-energy scattering
states also possible (but 
stronger dependence on 
range)

Periodic systems (cubic 
subgroups) straightforward.



25

Water dimer LDA
aug-cc-pVTZ geometry, kcal/mol.

Basis Uncorrected BSSE Corrected

cc-pVDZ -11.733 -3.958 -7.775

cc-pVTZ -9.464 -1.654 -7.810

cc-pVQZ -8.708 -0.821 -7.888

aug-cc-pVDZ -8.187 -0.382 -7.805

aug-cc-pVTZ -7.992 -0.086 -7.906

aug-cc-pVQZ -7.995 -0.054 -7.941

ε=10-3 -6.483

ε=10-5 -7.932

ε=10-7 -7.943
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Benzene dimer LDA
aug-cc-pVDZ geometry, kcal/mol.

Basis Uncorrected BSSE Corrected
cc-pVDZ -1.506 -1.035 -0.471
cc-pVTZ -1.271 -0.387 -0.884
cc-pVQZ -1.074 -0.193 -0.881

aug-cc-pVDZ -1.722 -0.698 -1.024
aug-cc-pVTZ -1.159 -0.193 -0.966

ε=10-5 -0.872
ε=10-7 -0.956
ε=10-9 -0.956
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LDA scaling with Z and system size (energy ε=10-5)
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High-precision Hartree-Fock
geometry for water

• Pahl and Handy Mol. Phys. 100 (2002) 3199
– Plane waves + polynomials for the core
– Finite box (L=18) requires extrapolation 
– Estimated error 3µH, 1e-5 Angstrom

• k=11, conv.tol=1e-8,ε=1e-9, L=40
– Max. gradient = 3e-8, RMS step=5e-8
– Difference to Pahl 10µH, 4e-6 Angstrom, 0.0012

Basis OH HOH Energy
k=11 0.939594 106.3375 -76.06818006
Pahl 0.939598 106.3387 -76.068170
cc-pVQZ 0.93980 106.329 -76.066676
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Current Capabilities
• Open/closed shell Hartree-Fock and DFT

– Wide range of GGAs, hybrid (O(N) HF exchange), 
and asymptotically corrected functionals

– Energies and analytic derivatives
– Full TDDFT and RPA for excitation energies  *****
– Abelian point groups
– Parallel execution on shared memory computers 
– Interfaces to NWChem and GAMESS-US

• Working prototypes for computing in 6D
– Direct solution of the pair equation for polyatomic 

systems (initial target is basis-set limit MP2)
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Prototype code in use by …

• Hideo Sekino at Toyohashi, Japan
– Benchmark calculations of base pair stacking
– Electron transport in molecules

• Schaefer and Allen U. Georgia, Athens, USA
– Benchmark HF energies and structures

• Tennant, U. Sheffield, England
– New solvation models
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High-level composition using 
functions and operators

• Conventional quant. chem. uses explicitly 
indexed sparse arrays of matrix elements
– Complex, tedious and error prone

• Python classes for Function and Operator
– in 1,2,3,6 and general dimensions
– wide range of operations 
Hpsi = -0.5*Delsq*psi+ V*psi
J = Coulomb.apply(rho)

• All with guaranteed speed and precision
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New solver being developed
• Working with localized orbitals

– O(1) application of operators to one orbital
– O(N) computation of Coulomb potential (already)
– O(N) computation of Fock-like matrices 

• As a result of localized orbitals

– More robust convergence 

• Near total rewrite in C++ 
– Two-levels of parallelism targeting massively 

parallel computer using multi-processor nodes
– In anticipation of highly-threaded processors
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1-D Example Sub-Tree Parallelism
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Both sub-trees can be done in parallel. 
In 3-D nodes split into 8 children … in 6-D there are 64 children
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Next Generation 
Languages/Mechanisms

• DARPA HPCS – P is productivity not performance
• X10 (IBM) 

– Derivative of Java
– Futures/Async(Dynamic Scheduling)
– Var@Place (notion of locality)

• Chapel (Cray) (funded under DARPA HPCS)
– Roots in ZPL, MTA stuff, and others
– Futures
– Domains (locality and scheduling)

• Fortress (Sun)
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Futures

• Parallel language construct that simplifies parallel 
execution with a dependency upon result
– Store an unevaluated expression in a variable of type 

Future 
– May be executed by another thread as resources permit
– Reference to the result forces it to be evaluated if it has 

not yet been done so.
• Implementation as templated C++ class with thread 

pool (similar interface to Java)
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Recursive composition with 
Futures

void Function::_reconstruct(OctTreeT *t) {
Tensor<double> ss = unfilter(t->data());

FORIJK(OctTreeT *child = t->child(i,j,k);
if (child) {

child->data()…;
_reconstruct(child);

}
else {

t->insert_child(…);
});

};

void Function::_reconstruct(OctTreeT *t) {
Tensor<double> ss = unfilter(t->data());
Future<void,Function,OctTreeT*> fut[2][2][2];
FORIJK(OctTreeT *child = t->child(i,j,k);

if (child) {
child->data()…;                         

fut[i][j][k].start(&Function::_reconstruct, this, child);
}
else {

t->insert_child(…);
});

FORIJK( fut[i][j][k].force(); );
};

Sequential Multithreaded
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Electron correlation
• All defects in the mean-field model are ascribed to 

electron correlation
• Consideration of singularities in the Hamiltonian 

imply that for a two-electron singlet atom (e.g., He)

• Include the inter-electron distance in the 
wavefunction
– E.g., Hylleraas 1938 wavefunction for He

– Potentially very accurate, but not systematically 
improvable, and (until recently) not computationally 
feasible for many-electron systems
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Conventional approach
• The two-electron wave function is expanded as a 

product of one-particle functions (orbitals)

• Can prove for atoms, that if saturate the atomic basis 
up to some angular momentum L, then

• Correlation consistent basis sets (Dunning) are 
currently the best choice – cost is 

• Explicitly correlated wave functions yields
• Fully numerical promises  
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Multiresolution solver of two-electron 
Schrödinger equation

• Wavefunction in 6-D multiresolution representation 
• Solve integral equation

– The 6D GF nominally has 12 indices!  Separated 
representation of operator accurate and efficient

• Partly or fully use SVD to represent 6-D tensor 
coefficient sets
– Blocks separated from the diagonal have low rank (1 or 2, 

the full rank being k3) 
– Directly analogous to linear CI expansion but not global

• Can compute directly in this form, but other 
refinements make it much more practical
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Analytic removal of cusp(s)
• Two-electron 

Hamiltonian
• Two-electron 

wavefunction
• Transformed 

problem

• Choose u to eliminate singularity at r12=0
• Quantum Monte Carlo calculations

– Best to eliminate all r1=0, r2=0, r12=0, r1=r2=r12=0
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Smoothed potential and wave function
• Similarity-transformed Hamiltonian with correlation 

factor (cf. transcorrelated Hamiltonian)
– The effective wavefuntion Φ as well as the transformed 

Hamiltonian is smoothed at r12=0

– Electron-electron repulsion is smoothed 
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Smoothed interelectron potential
• Correlation factor

– Jastrow

– Exponential

– Linear
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Solve for the correlation correction 
to the HF wavefunction

• The smoothed wavefunction is separated 
into Hartree-Fock wavefunction and its 
perturbation. 
– The perturbative wavefunction is numerically 

smaller than Hartree-Fock wavefunction. 
( ) ( ) ( )1 2 1 2 1 2, , ,HFr r r r r rδΦ = Φ + Φ

( )1 2 2
, 1.0HF r rΦ =

( )1 2 2
, 0.r rδ Φ ≈ 1 For He atom
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Preliminary 
results

for He atom 

Variational E ∆E residual

-0.023 84
-0.005 51
-0.001 75
-0.000 70
-0.000 32
-0.000 20

…
-0.000 04

+0.000 004
14 -2.903 77 -0.000 04 0.000 28

HF -2.861 61
Iter. 0 -2.871 08 0.414 73

1 -2.894 92 0.017 28
2 -2.900 43 0.007 94

4 -2.902 88 0.002 02

6 -2.903 39 0.000 91
… … …
12 -2.903 73 0.000 36
13 -2.903 73 0.000 32

3 -2.902 18 0.003 84

5 -2.903 20 0.001 25

Computational details:

- 5-th order multiwavelets
- Wavelet threshold:   2×10-5

- SVD threshold:  2×10-6

- Exponential correlation factor
Perturbative wavefunction:

- Maximum refinement: n=4

-Memory:  132M in full SVD 
form

-Energy is variational
(small non-variational is 
just truncation err)

exact -2.903 74  (E(HF)=-2.861 68)

cc-pV6Z -2.903 48 (FCI)  (E(HF)= -2.861 67)

Hylleraas (6 terms) -2.903 24
Löwdin and Redei -2.895 4
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Coulomb hole (He)
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Summary
• Multiresolution analysis provides a general 

framework for computational chemistry
– Accurate and efficient with high-level composition
– Multiwavelets provide high-order convergence and 

readily accommodate singularities/boundary conditions
– General framework readily accessible to researchers
– Real impact will be application to many-body models

• Separated form for operators and functions
– Critical for efficient computation in higher dimension

• Precision is guaranteed
– Excited states, non-linear response, …
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