
• Cuprates: U~t → no small parameter for
perturbative expansion

• But: Length-scale of correlations small

→ Dynamical Cluster Approximation (DCA):
Map system onto cluster embedded in mean-
field

 Thermodynamic limit

 Correlation within the cluster are treated
explicitly, while those at longer length-scales
are treated on the mean-field level

Decisive change in the understanding of high-temperature
superconductivity through improved computing capability
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Layered structure        2D Hubbard model

• Superconductivity takes place in CuO-planes →
Reduction to 2D model

• CuO unit cell represented by single site → 2D
Hubbard model:

• N interacting electrons on a square lattice

• Problem: N≈1023

• Exactly solvable only in 1D, not in 2D
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DCA phase diagram     Generic HTSC phase diagram

 Antiferromagnetic and d-wave superconducting phase, pseudogap behavior in
normal state

✗ But: Results contradict Mermin-Wagner theorem:

No finite T transition in 2D systems to state with broken continuous symmetry

→ No antiferromagnetism, superconductivity only as topological Kosterlitz-Thouless
order at finite T.

• Violation due to small cluster size → Larger cluster studies necessary!
But computational cost grows like Nc
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Take independent measurements of observables along Markov-chain in QMC
time → perfectly parallel
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Perfectly parallel:Perfectly parallel:

QMC clusterQMC cluster
solver on onesolver on one

processorprocessor

QMC clusterQMC cluster
solver on onesolver on one

processorprocessor

QMC clusterQMC cluster
solver on onesolver on one

processorprocessor

Serial:Serial:

QMC timeQMC timewarmupwarmup

Sample:Sample:
GG (DGER)(DGER)

QMC clusterQMC cluster
solver on onesolver on one

processorprocessor

DCA-QMC Runtime
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Performance of Concurrent DGERs 
(N=4480)
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• Fixed startup cost favors fewer faster processors

• Rank-1 matrix update (DGER)

o Few floating point operations per memory operation

o requires high memory bandwidth

• CGEMM benefits from high peak rate

• Production runs on Cray X1 (at ~50% efficiency)
perform up to 25 times faster than on IBM Power4

• Cray X1 enables simulations of larger clusters

o High memory bandwidth

o Powerful processors

Antiferromagnetic transition

 Transition temperature falls logarithmically with
cluster size → Mermin-Wanger theorem
recovered in large cluster limit

Superconducting transition

• Inverse pair-field susceptibility crosses zero for
Nc=4 and 8 → superconducting transition

✗ Low T extrapolation for larger Nc: No finite T
superconducting transition for Nc>8

• Additional inter-planar coupling t⊥
between infinite set of Hubbard planes
treated in planar DCA approximation
(no dynamics along c-axis)

Antiferromagnetic transition

 Antiferromagnetism stabilized with t⊥

Superconducting transition

✗ Interplanar coupling does not stabilize
superconductivity in larger clusters
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Conclusions

• The Nc=4 mean-field DCA/QMC simulations of
2D Hubbard model represent an excellent
description of the low-energy physics of the HTSC.

• The performance advantage of the Cray X1
provides the capability to perform simulations at
much larger cluster sizes and lower temperatures,
thus enabling new science.

• Consistent with the Mermin-Wagner theorem, the
finite temperature antiferromagnetic and
superconducting transitions found in the Nc=4
results are systematically suppressed with increasing
cluster size.

• Most significantly, no Kosterlitz-Thouless
superconducting transition is found in the large
cluster results of the 2D Hubbard model at
temperatures and dopings relevant to the cuprates.

• A simple, non-dynamical two-dimensional
treatment of an additional inter-planar coupling
between an infinite set of Hubbard layers is found to
restore antiferromagnetism, but to have no effect on
superconductivity.

Future goals and computational
requirements

• The large cluster DCA/QMC results
show that the 2D Hubbard model lacks
key ingredients to capture the physics
of HTSC and hence call for a
qualitatively different approach to solve
the problem that has dominated
condensed matter physics for almost
two decades.

→ Some additional mechanism is
necessary to stabilize the behavior seen
in small clusters. Possibilities include

• Phonons

• Frustration

• Disorder (indications (chemical
inhomogeneities) are seen in
experiments)

New complexity

• Inclusion of disorder in the
DCA/QMC simulations requires
QMC sampling of many replicas of the
cluster (one for each disorder
realization).

Scalability = Capability

→ Many more processors are needed to
tackle increased complexity
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• But: Fixed startup cost on every processor

Technique: DCAHigh-Tc superconductors & Model 4-site cluster DCA results

DCA/QMC code: Perfectly parallel? DCA/QMC code: Performance

Conclusions and future goalsLarge cluster DCA results


