
Generate Trace data: Using PMPI interface defined by MPI-1[4], generate trace data for the parallel
program with a time stamp that is provided by high resolution timers

Gather parameters for target system: Using microbenchmarks[5], probe specific performance
parameters that are of interest, for example, communication latency, and operating system noise

Parameterize Simulated Perturbations: Use the data to build an empirical distribution, such that the
shape of the actual distribution is captured

Inject perturbations: To analyse the application, perturb the performance analyser with the
distribution of simulated perturbations obtained in the previous step

Set Granularity of Analysis: Very fine granularity can be obtained with addition of more sub-events.
Sub-events can be added without much effort to the analyser

Comment: Since this method takes trace data from a real run of the application, the results obtained
are expected to be closer to the actual performance of the application in real environment

The ability to understand the factors contributing to parallel
program performance are vital for tuning applications for existing
platforms and procurement of future platforms based on the
performance characteristics of the application set to use the
resources. The primary causes of performance issues within
distributed memory parallel computers is the latency of the
interconnection network and perturbations to applications on
processors due to interactions with the operating system and other
tasks[1,3]. One technique for analyzing the performance
characteristics of a parallel program is to simulate perturbations in
message latency and processor compute time, and propagate
these perturbations through subsequent messages and
computations to observe their effect on application runtime. We
propose a methodology for analyzing the performance
characteristics of parallel programs based on message passing
traces of their execution on a set of processors. We present this
framework in the context of Message Passing Interface library
(MPI), but the work itself is not bound to MPI.

n-body simulations, n2 particles & p-processes
Each process owns a packet of n/p particles
Pi sends its packet to (i+1(mod)p)th process
Requires O (n) steps to complete
Uses Blocking Send-Recv MPI-primitives

A Framework for Trace Based Performance Analysis of Parallel Programs
via Message Passing Graph Traversal

Matthew J. Sottile
Los Alamos National Laboratory, NM

For a parallel program running on p-
processing elements, an interconnected p-
straight line (or trace) graphs (one trace per
processor) can be constructed, with nodes as
events and edges as the delay due to
communication or operating system

With the order of execution preserved, such a
graph can be used to analyze the parallel
program, based on the interconnections
between the nodes. Such a graph is a Message
Passing Graph

We present a methodology and prototype of a
performance analysis tool that is closer to the
performance of application on real machine.

No changes in the order of execution ensures
correctness of the model.

This preliminary work establishes the
feasibility and correctness of the method.

Future work will add a complete set of MPI-
Primitives and a richer set of parameters.

Introduction Performance Analysis through Message Passing Graph

What is a Message Passing Graph?

Conclusions and Future Work

Figure 1. A single event in a
Message passing graph is
illustrated. This figure
represents a “send-receive”
communication event. “Send”
event belongs to one
processor and “Recv” event
belongs to another. Edges
within a processor events
represents operating system
noise and edges between
nodes different processors
represent communication
latency

Figure 1: A message passing graph for four
processors is shown. Trace data is generated
using standard PMPI interface defined in MPI-
1. For demonstration purpose, extremely short
trace with only four events is used. Each event
is split into two sub-events: a start sub-event
and an end sub-event. Ti represents ith process.
An edge between two sub-events in the same
trace represents operating system noise, and
an edge between two sub-events on different
traces represents communication latency.

Preliminary Results on Token Ring[2]

Perturbation ID
0 1 2 3 4 5 6 7 8 9 10

Pr
oc

es
so

r C
yc

le
 C

ou
nt

s

D elay in p rogram te rm in a tion

0 1 2 3 4 5 6 7 8 9 10

Pr
oc

es
so

r C
yc

le
 C

ou
nt

s

D elay in p rogram te rm ina tion

(b)(a)

Perturbation ID

Figure 2: This figure demonstrates the performance analysis of Token Ring implementation.
In (a) perturbation in OS Noise is injected and in (b) perturbation in Communication
Latency is injected. Token Ring implementation uses only blocking MPI-primitives, hence,
the delay in program termination should follow the nature of perturbations. Intentionally, we
injected perturbations of the nature of Gaussian distribution, and as expected the output
follows the perturbation. Since we are interested in analysing the working of the
performance analyser, values on y-axis are not very important, hence they are not shown.

References
[1] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley and Sons, 1991.
[2] Joseph JaJa. An Introduction to Parallel Algorithms. Addison Wesley, 1992.
[3] Averill M. Law and W. David Kelton. Simulation Modeling and Analysis. McGraw-Hill, second edition, 1991.
[4] Message Passing Interface Forum. MPI: A message-passing interface standard. Technical Report UT-CS-
94-230, University of Tennessee, 1994.
[5] Matthew Sottile and Ronald Minnich. Analysis of Microbenchmarks for the Performance Tuning of Clusters.
In Proceedings of Cluster 2004, 2004.

David A. Bader
Georgia Institute of Technology

Vaddadi P. Chandu
vchandu@cc.gatech.edu

Georgia Institute of Technology

