
Generate Trace data: Using PMPI interface defined by MPI-1[4], generate trace data for the parallel 
program with a time stamp that is provided by high resolution timers

Gather parameters for target system: Using microbenchmarks[5], probe specific performance 
parameters that are of interest, for example, communication latency, and operating system noise

Parameterize Simulated Perturbations: Use the data to build an empirical distribution, such that the 
shape of the actual distribution is captured 

Inject perturbations: To analyse the application, perturb the performance analyser with the 
distribution of simulated perturbations obtained in the previous step

Set Granularity of Analysis: Very fine granularity can be obtained with addition of more sub-events. 
Sub-events  can be added without much effort to the analyser

Comment: Since this method takes trace data from a real run of the application, the results obtained 
are expected to be closer to the actual performance of the application in real environment

The ability to understand the factors contributing to parallel 
program performance are vital for tuning applications for existing 
platforms and procurement of future platforms based on the 
performance characteristics of the application set to use the 
resources. The primary causes of performance issues within 
distributed memory parallel computers is the latency of the 
interconnection network and perturbations to applications on 
processors due to interactions with the operating system and other 
tasks[1,3]. One technique for analyzing the performance 
characteristics of a parallel program is to simulate perturbations in 
message latency and processor compute time, and propagate 
these perturbations through subsequent messages and 
computations to observe their effect on application runtime. We 
propose a methodology for analyzing the performance 
characteristics of parallel programs based on message passing 
traces of their execution on a set of processors. We present this 
framework in the context of Message Passing Interface library 
(MPI), but the work itself is not bound to MPI.

n-body simulations, n2 particles & p-processes
Each process owns a packet of n/p particles
Pi sends its packet to (i+1(mod)p)th process
Requires O (n) steps to complete
Uses Blocking Send-Recv MPI-primitives
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For a parallel program running on p-
processing elements, an interconnected p-
straight line (or trace) graphs (one trace per 
processor) can be constructed, with nodes as 
events and edges as the delay due to 
communication or operating system

With the order of execution preserved, such a 
graph can be used to analyze the parallel 
program, based on the interconnections 
between the nodes. Such a graph is a Message 
Passing Graph

We present a methodology and prototype of a 
performance analysis tool that is closer to the 
performance of application on real machine.

No changes in the order of execution ensures 
correctness of the model.

This preliminary work establishes the 
feasibility and correctness of the method.

Future work will add a complete set of MPI-
Primitives and a richer set of parameters.

Introduction Performance Analysis through Message Passing Graph

What is a Message Passing Graph?

Conclusions and Future Work

Figure 1. A single event in a 
Message passing graph is 
illustrated. This figure 
represents a “send-receive”
communication event. “Send”
event belongs to one 
processor and “Recv” event 
belongs to another. Edges 
within a processor events 
represents operating system 
noise and edges between 
nodes different processors 
represent communication 
latency

Figure 1: A message passing graph for four 
processors is shown. Trace data is generated 
using standard PMPI interface defined in MPI-
1. For demonstration purpose, extremely short 
trace with only four events is used. Each event 
is split into two sub-events: a start sub-event 
and an end sub-event. Ti represents ith process. 
An edge between two sub-events in the same 
trace represents operating system noise, and 
an edge between two sub-events on different 
traces represents communication latency.

Preliminary Results on Token Ring[2]
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Figure 2: This figure demonstrates the performance analysis of Token Ring implementation. 
In (a) perturbation in OS Noise is injected and in (b) perturbation in Communication 
Latency is injected. Token Ring implementation uses only blocking MPI-primitives, hence, 
the delay in program termination should follow the nature of perturbations. Intentionally, we 
injected perturbations of the nature of Gaussian distribution, and as expected the output 
follows the perturbation. Since we are interested in analysing the working of the 
performance analyser, values on y-axis are not very important, hence they are not shown.
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