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CMR Manganites: Phase Diagrams

Phase Diagram of La,_ Ca MnQ,

Uehara, Kim and Cheong
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Model Phase Diagram Calculations
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http://arxiv.org/abs/cond-mat/0509418

Understanding the CMR Effect
A. Moreo et al., Science 26, 283, (1999)

NO DISORDER Recent review: E. Dagotto,
Science 309, 257 (2005)

Insulator
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Diagonalizing the fermion matrix

Hamiltonian is quadratic in fermion operators (matrix): 4N
dimensional Hilbert space but problem is reduced to solving
the “one-particle Hilbert space” (2N states) and filling levels.

Integration of classical spins with Monte Carlo

Complexity:

— Previous method method: Matrix diagonalization is O(N 3),
executed O(N) times in the Monte Carlo integration: O(N %)

= more efficient diagonalization: truncated polynomial
expansion of density of states (Motome and Furukawa):
complexity O(N) and it can be parallelized.
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Computational Simulation on XT3

Microscopic phenomenological model
_ DISORDER (~100 procs.) 1%t parallelization

MONTE CARLO INTEGRATION (V18! ornob)
(order N complexity)

Polynomial expansion method
for electrons. 2" parallelization
(scales up to 16 to 40 procs.) (non-trivial)

Most time consuming function:
Sparse matrix-vector multiplication

——
——

~ Typical runs of 1600 to 4000 procs. For phase diagrams, etc.
~ Runs usually take 12 to 20 hours to complete.
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Scaling and Reliability of the

Polynomial Expansion Method
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Phase Diagram with Disorder on the
XT3

L e D

T/t | i
0.15F & 20x20 (A=0.05)| 7
0 32x32 (A=0.05)

0.10

0.05

0.00 0.05 ' 0. 50
OAl‘\ N\IDUOLC INAITIVINAL LLADURRATURNT AF /
U. S. DEPARTMENT OF ENERGY UT-BATTELLE

9



Spin-Phonon-Fermion (SPF) Code

= Http: //mri-fre.ornl.gov/spf

~ Integration into psimag toolkit in progress (http: //mri-
fre.ornl.gov/psimag)

-~ MPI with two group communicators: one for the inner
Integration (PEM) and another to parallelize chemical
disorder.

~ Code profiled so that most time consuming function is
the sparse matrix-vector multiplier as expected.

~ SPF code also allows us to simulate other magnetic
materials: e.g. Diluted magnetic semiconductors (have
Interest in spintronics).
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Conclusions

s Get inspiration for future technologies by studying CMR in
manganites.

= New O(N) algorithm and scalable implementation on XT3
allows us to solve a realistic model.

» Chemical disorder creates a region in the phase diagram
relevant to understand the CMR effect.
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The End
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Conclusions

= Calculation of phase diagrams with the polynomial
expansion (PEM) are now possible using ~1600 procs. on
the Cray XT3.

= By including chemical disorder into the model we will be
able to test a hypothesis to explain the CMR effect and
more generally to study phase separation and
Inhomogeneities.

» The PEM will be used on the Cray XT3 to study
material-specific spin-fermion models with unbiased
techniques.
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Complex Observables

~ Spectral functions and dynamical observables require more
moments for the expansion.

= This implies that the inner parallelization scales up to a larger
number of procs. (from 50-100 procs).

= Similar trends for the calculation of conductances or
resistivities.

~ These “complex” observables are calculated in selected regions
of the phase diagram. ¢
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ferromagnetic clusters (?)
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Interesting region where CMR effect happens!
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[Schiffer et al., PRL 75, 3336 (1995)]

La, ,Ca MnO,

1
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Colossal Magneto-resistive
manganites

e Certain manganites (Mn oxides) show the so
called CMR effect.

o Applied magnetic fields produce colossal
variations of resistivity.

e Theoretical interest in manganites: they are
correlated electron systems.

e Possible technological applications in the
future.
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Main goals remove

= Study the magnetic phase diagram of the model.

=~ Include disorder to search for explanations to the
CMR effect.

~ Include even more realistic band structure and build
material-specific models.
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