
• Hybrid model features:
– Overlap of densities
– Exchange of solvent molecules between ab initio/TF subsystems 
– No additional parameters are needed (unlike QM/MM) once TF density is specified

• Suitable for (bio)molecules in solution
– ab initio DFT: biomolecule (chemically active part), nearby solvent molecules
– TF: all other solvent molecules (>1000)

• Initial application: Prion protein PrPC

– Involved in neurodegenerative diseases: Creutzfeld-Jacob disease, Bovine spongiform 
encephalopathy (BSE)

– misfolding into scrapie form PrPSc

•ab initio: PrPC, 12 waters (109 atoms)
•Thomas-Fermi: 1469 waters (4407 atoms)
•ab initio part takes 97% of CPU time
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Summary

o The Chemical Endstation brings together researchers from 
12 academic and government laboratories representing 
research projects funded by DOE, NSF and other agencies, 
with the common interest in the rational design of 
catalysts

o The large collaboration has been very successful: several 
important publications including articles in Physical 
Review Letters and an article which made the cover of 
Physical Chemistry Chemical Physics. 

o 11 Journal Articles, 22 presentations, 8 post-doctoral 
students and 3 graduate students
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o Surface strain plays a major 
role in determining the rate 
limiting step and catalytic 
activity of platinum for CO 
oxidation.

o Density functional theory (DFT) 
calculations were used to 
investigate the change of 
thermodynamics and kinetics 
with variations in surface strain 
on the Pt(111) surface.

o ORNL resources were used to 
perform part of the DFT 
calculations in this work.

Catalytic role of defective carbon substrates in the dissociation of water
Kostov, Santiso, George, Gubbins and Buongiorno-Nardelli

Potential energy surface for 
water dissociation on a 
vacancy in graphene - low 
energy barriers wrt the 
direct thermal splitting due 
to the ability of the carbon 
substrate to keep the 
reaction on the spin singlet 
surface

H2O→H2+O

Defective carbon 
substrate can produce 
hydrogen from water at 
temperatures at least a 
factor of 2 lower for 
hydrogen yields 
comparable to the free 
space reaction

Cu-PrPC binding site geometry ————————

• Copper-HGGGW bond distances (Å):

• Solvation is important for non-covalent 
bonds

Dry partial full
protein solvation solvation

Cu-N1 1.99 1.98 1.98
Cu-N2 2.01 2.00 2.01
Cu-N3 1.91 1.91 1.92
Cu-O 2.23 2.41 2.36

Cu-W1 - 2.78 2.82
Cu-W2 - 2.79 2.7

Gap between unoccupied and 
occupied states:

Dry PrPC-Cu:      2.11 eV
Partial solvation: 2.25 eV
Full solvation:     2.38 eV

Solvation is important for electronic 
properties and cannot be neglected

Also important for reaction 
energetics

Surface reconstructions of TiO2 (110) driven by suboxides —
Pan, Meunier

• Recent experiments of highly dispersed gold on 
titanium oxide show remarkable catalytic activity

• Defects are believed to play a crucial role in the 
formation of nano-clusters on surface

• A part of the challenge in understanding defects is 
that transition metal oxides range of stoichiometry
and structure.

• From the comparison between experimental and 
theoretical studies

• the formation of face- sharing octahedra is a 
mechanism through which a "bulk-like" (1x1) 
surface can be restored in sub-stoichiometry: 
2(TiO) instead of 2(TiO2) per unit cell. When the 
row of 2(TiO) is reduced, the remaining structure 
relaxes into a Ti-rich double row of Ti2O, which 
exhibits key characteristics consistent with 
previously reported double strands.
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Particle size effects on Pt particle reactivity        
Yu, Schneider, Shelton

Supported metal nanoclusters have been gaining 
growing
research interest in catalysis
new materials distinct from bulk metals (e.g., Au)
synthesis techniques becoming more 
sophisticated
exciting possibility of potentially tunable catalytic 
properties

Activity of metal catalysts depends on chemical 
environment
fluid phase (T; p; C), support, surface species, …
e.g., the active phase of several transition-metal 
oxidation 
catalysts is not metallic but metal oxides

Nanoclusters may be very sensitive to environment
effects of particle size and environment on 
structure, composition,reactivity
DFT calculations performed to better understand 
these effects
focus is on Pt in oxidizing environment

O2 atmosphere affects the composition and structure of Pt clusters
Reactivity of Pt clusters very different from Pt bulk surface
Strong size dependence observed in both the oxidation and reactivity of P clusters

Surface Strain ——————————————————————
Grabow, Xu, Mavrikakis


