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But First…
�Are we too CPU-centric?
�What about I/O?

– What do applications need (not what are they 
doing)?

– Will problems with scalable, parallel I/O be 
what keeps massively parallel machines from 
succeeding?
•Are you sure?  How much are you willing to 
bet? $100M? $200M?
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Where will we get (Sustained) 
Performance?

�Algorithms that are a better 
match for the architectures
�Parallelism at all levels
�Concurrency at all levels
�A major challenge is to realize

these approaches in code
– Most compilers do poorly with important 

kernels in computational science
– Three examples - sparse matrix vector 

product, dense matrix-matrix multiply, flux 
calculation
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Realistic Measures of  Peak Performance
Sparse Matrix Vector Product
One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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Very Few Compilers do well on 
DGEMM (n=500)
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Effect of code transformations for uni-
processor performance
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Performance for Real Applications
� Dense matrix-matrix example shows that even for well-studied, 

compute-bound kernels, compiler-generated code achieves only a 
small fraction of available performance
– “Fortran” code uses “natural” loops, i.e., what a user would write 

for most code
– Others use multi-level blocking, careful instruction scheduling etc.  

� Algorithms design also needs to take into account the capabilities of 
the system, not just the hardware
– Example: Cache-Oblivious Algorithms 

(http://supertech.lcs.mit.edu/cilk/papers/abstracts/abstract4.html)
� Adding concurrency (whether multicore or multiple processors) just 

adds to the problems

http://supertech.lcs.mit.edu/cilk/papers/abstracts/abstract4.html
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Possible solutions
� Single, integrated system

– Best choice when it works 
• Matlab

� Current Terascale systems and many proposed petascale systems exploit hierarchy
– Successful at many levels

• Cluster hardware
• OS scalability

– We should apply this to productivity software
• The problem is hard
• Apply classic and very successful Computer Science strategies to address the 

complexity of generating fast code for a wide range of user-defined data 
structures.

� How can we apply hierarchies?
– One approach is to use libraries

• Limited by the operations envisioned by the library designer
– Another is to enhance the users ability to express the problem in source code
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Annotations
� Aid in the introduction of hierarchy into the software

– Its going to happen anyway, so make a virtue of it
� Create a “market” or ecosystem in transformation tools
� Longer term issues

– Integrate annotation language into “host” language to ensure 
type safety, ensure consistency (both syntactic and semantic), 
closer debugger integration, additional optimization opportunities 
through information sharing, …
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Examples of the Challenges
� Fast code for DGEMM (dense matrix-matrix multiply)

– Code generated by ATLAS omitted to avoid blindness ☺
– Example code from “Superscalar GEMM-based Level 3 BLAS”, 

Gustavson et al on the next slide
� PETSc code for sparse matrix operations

– Includes unrolling and use of registers
– Code for diagonal format is fast on cache-based systems but 

slow on vector systems.  
• Too much code to rewrite by hand for new architectures

� MPI implementation of collective communication and computation
– Complex algorithms for such simple operations as broadcast and 

reduce are far beyond a compiler’s ability to create from simple 
code
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A fast DGEMM (sample)

      SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
     $                   BETA, C, LDC ) 
... 
                  UISEC = ISEC-MOD( ISEC, 4 ) 
                  DO 390 J = JJ, JJ+UJSEC-1, 4 
                     DO 360 I = II, II+UISEC-1, 4 
                        F11 = DELTA*C( I,J ) 
                        F21 = DELTA*C( I+1,J ) 
                        F12 = DELTA*C( I,J+1 ) 
                        F22 = DELTA*C( I+1,J+1 ) 
                        F13 = DELTA*C( I,J+2 ) 
                        F23 = DELTA*C( I+1,J+2 ) 
                        F14 = DELTA*C( I,J+3 ) 
                        F24 = DELTA*C( I+1,J+3 ) 
                        F31 = DELTA*C( I+2,J ) 
                        F41 = DELTA*C( I+3,J ) 
                        F32 = DELTA*C( I+2,J+1 ) 
                        F42 = DELTA*C( I+3,J+1 ) 
                        F33 = DELTA*C( I+2,J+2 ) 
                        F43 = DELTA*C( I+3,J+2 ) 
                        F34 = DELTA*C( I+2,J+3 ) 
                        F44 = DELTA*C( I+3,J+3 ) 
                        DO 350 L = LL, LL+LSEC-1 
                           F11 = F11 + T1( L-LL+1, I-II+1 )* 
     $                                              T2( L-LL+1, J-JJ+1 ) 
                           F21 = F21 + T1( L-LL+1, I-II+2 )* 
     $                                              T2( L-LL+1, J-JJ+1 ) 
                           F12 = F12 + T1( L-LL+1, I-II+1 )* 
     $                                              T2( L-LL+1, J-JJ+2 ) 
                           F22 = F22 + T1( L-LL+1, I-II+2 )* 
     $                                              T2( L-LL+1, J-JJ+2 ) 
                           F13 = F13 + T1( L-LL+1, I-II+1 )* 
     $                                              T2( L-LL+1, J-JJ+3 ) 
                           F23 = F23 + T1( L-LL+1, I-II+2 )* 
     $                                              T2( L-LL+1, J-JJ+3 ) 
                           F14 = F14 + T1( L-LL+1, I-II+1 )* 
     $                                              T2( L-LL+1, J-JJ+4 ) 
                           F24 = F24 + T1( L-LL+1, I-II+2 )* 
     $                                              T2( L-LL+1, J-JJ+4 ) 
                           F31 = F31 + T1( L-LL+1, I-II+3 )* 
     $                                              T2( L-LL+1, J-JJ+1 ) 
                           F41 = F41 + T1( L-LL+1, I-II+4 )* 
     $                                              T2( L-LL+1, J-JJ+1 ) 
                           F32 = F32 + T1( L-LL+1, I-II+3 )* 
     $                                              T2( L-LL+1, J-JJ+2 ) 
                           F42 = F42 + T1( L-LL+1, I-II+4 )* 
     $                                              T2( L-LL+1, J-JJ+2 ) 
                           F33 = F33 + T1( L-LL+1, I-II+3 )* 
     $                                              T2( L-LL+1, J-JJ+3 ) 
                           F43 = F43 + T1( L-LL+1, I-II+4 )* 
     $                                              T2( L-LL+1, J-JJ+3 ) 
                           F34 = F34 + T1( L-LL+1, I-II+3 )* 
     $                                              T2( L-LL+1, J-JJ+4 ) 
                           F44 = F44 + T1( L-LL+1, I-II+4 )* 
     $                                              T2( L-LL+1, J-JJ+4 ) 
  350                   CONTINUE 
 ... 
*     End of DGEMM. 
* 
      END 
 
 

Why not just

do i=1,n

do j=1,m

c(i,j) = 0

do k=1,p

c(i,j) = c(i,j) + a(i,k)*b(k,j)

enddo

enddo

enddo

Note: This is just part of DGEMM!
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Performance of Matrix-Matrix Multiplication 
(MFlops/s vs. n2; n1 = n2; n3 = n2*n2)
Intel Xeon 2.4 GHz, 512 KB L2 Cache, Intel Compilers at –O3 (Version 8.1), 
February 12, 2006
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Observations
� Much use of mechanical transformations of code to achieve better

performance
– Compilers do not do this well

• Too many other demands on the compiler
� Use of carefully crafted algorithms for specific operations such as 

allreduce, matrix-matrix multiply
– Far more challenging than the performance transformations

� Increasing acceptance of some degree of automation in creating 
code
– ATLAS, PhiPAC, TCE
– Source-to-source transformation systems

• E.g., ROSE, Aspect Oriented Programming (asod.net)

http://asod.net/
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Key Observations
� 90/10 rule

– current languages adequate for 90% of code
– 10% of code causes 90% of trouble

� Memory hierarchy issues a major source of problems
– Significant effort is put into relatively mechanical transformations of code
– Other transformations are avoided because of their negative impact on 

the readability and maintainability of the code.
• Example is loop fusion for routines that sweep over a mesh to apply 

different physics.  Fusion, needed to reduce memory bandwidth 
requirements, breaks modularity of routines written by different
groups.

� Coordination of distributed data structures another major source of problems
– But the need for performance encourages a global/local separation

• Reflected in PGAS languages
� New languages may help, but not anytime soon

– New languages will never be the entire solution
– Applications need help now
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One Possible Approach
� Use annotations to augment existing languages

– Not a new approach; used in HPF, OpenMP, others
– Some applications already use this approach for performance 

portability
• WRF weather code

� Annotations do have limitations
– Fits best when most of the code is independent of the parts 

affected by the annotations
– Limits optimizations that are available to approaches that 

augment the language (e.g., telescoping languages)
� But they also have many advantages…
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Annotations example: STREAM triad.c 
for BG/L

void triad(double *a, double *b, double *c, int n)
{

int i;
double ss = 1.2;
/* --Align;;var:a,b,c;; */
for (i=0; i<n; i++)

a[i] = b[i] + ss*c[i];
/* --end Align */

}

void triad(double *a, double *b, double *c, int n)
{

int i;
double ss = 1.2;
/* --Align;;var:a,b,c;; */
for (i=0; i<n; i++)

a[i] = b[i] + ss*c[i];
/* --end Align */

}

void triad(double *a, double *b, double *c, int n)
{
#pragma disjoint (*c,*a,*b)

int i;
double ss = 1.2;
/* --Align;;var:a,b,c;; */

if ( ((int)(a) | (int)(b) | (int)(c)) & 0xf == 0) {
__alignx(16,a);
__alignx(16,b);
__alignx(16,c);

for (i=0;i<n;i++) {
a[i] = b[i] + ss*c[i];

}
} 
else {

for (i=0;i<n;i++) {
a[i]=b[i] + ss*c[i];

}
/* --end Align */

}
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Simple annotation example: STREAM triad.c on BG/L

Size No Annotations
(MB/s)

Annotations (MB/s)

10 1920.00 2424.24

100 3037.97 6299.21

500000 1291.81 1830.89

1000000 1282.12 1442.17

2000000 1282.92 1415.52

1000 3341.22 8275.86

10000 1290.81 3717.88

50000 1291.52 3725.48

100000 1291.77 3727.21

5000000 1290.81 1446.48

2.5X

2.9X

1.12X
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Summary
� Provide tools to help computational scientists build transportable, 

high-performance applications by working with, not against the 
compiler

� Enable an ecosystem so that tools can compete
– Enables and rewards research and development

� Lowers the barrier to introducing more complex data structures and 
algorithms

� And don’t forget the I/O!
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