
Overcoming the Barriers
to Sustained Petaflop
Performance

William D. Gropp
Mathematics and Computer Science
www.mcs.anl.gov/~gropp

http://www.mcs.anl.gov/~gropp

Argonne National
Laboratory Title / email

But First…
�Are we too CPU-centric?
�What about I/O?

– What do applications need (not what are they
doing)?

– Will problems with scalable, parallel I/O be
what keeps massively parallel machines from
succeeding?
•Are you sure? How much are you willing to
bet? $100M? $200M?

Argonne National
Laboratory Title / email

Where will we get (Sustained)
Performance?

�Algorithms that are a better
match for the architectures
�Parallelism at all levels
�Concurrency at all levels
�A major challenge is to realize

these approaches in code
– Most compilers do poorly with important

kernels in computational science
– Three examples - sparse matrix vector

product, dense matrix-matrix multiply, flux
calculation

Argonne National
Laboratory Title / email

Realistic Measures of Peak Performance
Sparse Matrix Vector Product
One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0

1000

2000

3000

4000

5000

6000

Power 4 (1.3 GHz) Pentium 4 Xeon (2.4 GHz)

Theoretical Peak Oper. Issue Peak
Mem BW Peak Observed

Thanks to Dinesh Kaushik;
ORNL and ANL for compute time

Argonne National
Laboratory Title / email

Very Few Compilers do well on
DGEMM (n=500)

Argonne National
Laboratory Title / email

Effect of code transformations for uni-
processor performance

0
20
40
60
80

100
120
140
160
180

SP Origin Pentium

Base NOER
Interlacing NOE
Blocking NOER
Base
Interlacing
Blocking

Factor
of 7

Argonne National
Laboratory Title / email

Performance for Real Applications
� Dense matrix-matrix example shows that even for well-studied,

compute-bound kernels, compiler-generated code achieves only a
small fraction of available performance
– “Fortran” code uses “natural” loops, i.e., what a user would write

for most code
– Others use multi-level blocking, careful instruction scheduling etc.

� Algorithms design also needs to take into account the capabilities of
the system, not just the hardware
– Example: Cache-Oblivious Algorithms

(http://supertech.lcs.mit.edu/cilk/papers/abstracts/abstract4.html)
� Adding concurrency (whether multicore or multiple processors) just

adds to the problems

http://supertech.lcs.mit.edu/cilk/papers/abstracts/abstract4.html

Argonne National
Laboratory Title / email

Possible solutions
� Single, integrated system

– Best choice when it works
• Matlab

� Current Terascale systems and many proposed petascale systems exploit hierarchy
– Successful at many levels

• Cluster hardware
• OS scalability

– We should apply this to productivity software
• The problem is hard
• Apply classic and very successful Computer Science strategies to address the

complexity of generating fast code for a wide range of user-defined data
structures.

� How can we apply hierarchies?
– One approach is to use libraries

• Limited by the operations envisioned by the library designer
– Another is to enhance the users ability to express the problem in source code

Argonne National
Laboratory Title / email

Annotations
� Aid in the introduction of hierarchy into the software

– Its going to happen anyway, so make a virtue of it
� Create a “market” or ecosystem in transformation tools
� Longer term issues

– Integrate annotation language into “host” language to ensure
type safety, ensure consistency (both syntactic and semantic),
closer debugger integration, additional optimization opportunities
through information sharing, …

Argonne National
Laboratory Title / email

Examples of the Challenges
� Fast code for DGEMM (dense matrix-matrix multiply)

– Code generated by ATLAS omitted to avoid blindness ☺
– Example code from “Superscalar GEMM-based Level 3 BLAS”,

Gustavson et al on the next slide
� PETSc code for sparse matrix operations

– Includes unrolling and use of registers
– Code for diagonal format is fast on cache-based systems but

slow on vector systems.
• Too much code to rewrite by hand for new architectures

� MPI implementation of collective communication and computation
– Complex algorithms for such simple operations as broadcast and

reduce are far beyond a compiler’s ability to create from simple
code

Argonne National
Laboratory Title / email

A fast DGEMM (sample)

 SUBROUTINE DGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
 $ BETA, C, LDC)
...
 UISEC = ISEC-MOD(ISEC, 4)
 DO 390 J = JJ, JJ+UJSEC-1, 4
 DO 360 I = II, II+UISEC-1, 4
 F11 = DELTA*C(I,J)
 F21 = DELTA*C(I+1,J)
 F12 = DELTA*C(I,J+1)
 F22 = DELTA*C(I+1,J+1)
 F13 = DELTA*C(I,J+2)
 F23 = DELTA*C(I+1,J+2)
 F14 = DELTA*C(I,J+3)
 F24 = DELTA*C(I+1,J+3)
 F31 = DELTA*C(I+2,J)
 F41 = DELTA*C(I+3,J)
 F32 = DELTA*C(I+2,J+1)
 F42 = DELTA*C(I+3,J+1)
 F33 = DELTA*C(I+2,J+2)
 F43 = DELTA*C(I+3,J+2)
 F34 = DELTA*C(I+2,J+3)
 F44 = DELTA*C(I+3,J+3)
 DO 350 L = LL, LL+LSEC-1
 F11 = F11 + T1(L-LL+1, I-II+1)*
 $ T2(L-LL+1, J-JJ+1)
 F21 = F21 + T1(L-LL+1, I-II+2)*
 $ T2(L-LL+1, J-JJ+1)
 F12 = F12 + T1(L-LL+1, I-II+1)*
 $ T2(L-LL+1, J-JJ+2)
 F22 = F22 + T1(L-LL+1, I-II+2)*
 $ T2(L-LL+1, J-JJ+2)
 F13 = F13 + T1(L-LL+1, I-II+1)*
 $ T2(L-LL+1, J-JJ+3)
 F23 = F23 + T1(L-LL+1, I-II+2)*
 $ T2(L-LL+1, J-JJ+3)
 F14 = F14 + T1(L-LL+1, I-II+1)*
 $ T2(L-LL+1, J-JJ+4)
 F24 = F24 + T1(L-LL+1, I-II+2)*
 $ T2(L-LL+1, J-JJ+4)
 F31 = F31 + T1(L-LL+1, I-II+3)*
 $ T2(L-LL+1, J-JJ+1)
 F41 = F41 + T1(L-LL+1, I-II+4)*
 $ T2(L-LL+1, J-JJ+1)
 F32 = F32 + T1(L-LL+1, I-II+3)*
 $ T2(L-LL+1, J-JJ+2)
 F42 = F42 + T1(L-LL+1, I-II+4)*
 $ T2(L-LL+1, J-JJ+2)
 F33 = F33 + T1(L-LL+1, I-II+3)*
 $ T2(L-LL+1, J-JJ+3)
 F43 = F43 + T1(L-LL+1, I-II+4)*
 $ T2(L-LL+1, J-JJ+3)
 F34 = F34 + T1(L-LL+1, I-II+3)*
 $ T2(L-LL+1, J-JJ+4)
 F44 = F44 + T1(L-LL+1, I-II+4)*
 $ T2(L-LL+1, J-JJ+4)
 350 CONTINUE
 ...
* End of DGEMM.
*
 END

Why not just

do i=1,n

do j=1,m

c(i,j) = 0

do k=1,p

c(i,j) = c(i,j) + a(i,k)*b(k,j)

enddo

enddo

enddo

Note: This is just part of DGEMM!

Argonne National
Laboratory Title / email

Performance of Matrix-Matrix Multiplication
(MFlops/s vs. n2; n1 = n2; n3 = n2*n2)
Intel Xeon 2.4 GHz, 512 KB L2 Cache, Intel Compilers at –O3 (Version 8.1),
February 12, 2006

316

1177

724

579

1298 1253

699

1214
1305

744

1145 1136

661

1077 1103

0

200

400

600

800

1000

1200

1400

5 10 15 20 25

Triply Nested Loops Hand Unrolled Loop DGEMM from Intel MKL

Argonne National
Laboratory Title / email

Observations
� Much use of mechanical transformations of code to achieve better

performance
– Compilers do not do this well

• Too many other demands on the compiler
� Use of carefully crafted algorithms for specific operations such as

allreduce, matrix-matrix multiply
– Far more challenging than the performance transformations

� Increasing acceptance of some degree of automation in creating
code
– ATLAS, PhiPAC, TCE
– Source-to-source transformation systems

• E.g., ROSE, Aspect Oriented Programming (asod.net)

http://asod.net/

Argonne National
Laboratory Title / email

Key Observations
� 90/10 rule

– current languages adequate for 90% of code
– 10% of code causes 90% of trouble

� Memory hierarchy issues a major source of problems
– Significant effort is put into relatively mechanical transformations of code
– Other transformations are avoided because of their negative impact on

the readability and maintainability of the code.
• Example is loop fusion for routines that sweep over a mesh to apply

different physics. Fusion, needed to reduce memory bandwidth
requirements, breaks modularity of routines written by different
groups.

� Coordination of distributed data structures another major source of problems
– But the need for performance encourages a global/local separation

• Reflected in PGAS languages
� New languages may help, but not anytime soon

– New languages will never be the entire solution
– Applications need help now

Argonne National
Laboratory Title / email

One Possible Approach
� Use annotations to augment existing languages

– Not a new approach; used in HPF, OpenMP, others
– Some applications already use this approach for performance

portability
• WRF weather code

� Annotations do have limitations
– Fits best when most of the code is independent of the parts

affected by the annotations
– Limits optimizations that are available to approaches that

augment the language (e.g., telescoping languages)
� But they also have many advantages…

Argonne National
Laboratory Title / email

Annotations example: STREAM triad.c
for BG/L

void triad(double *a, double *b, double *c, int n)
{

int i;
double ss = 1.2;
/* --Align;;var:a,b,c;; */
for (i=0; i<n; i++)

a[i] = b[i] + ss*c[i];
/* --end Align */

}

void triad(double *a, double *b, double *c, int n)
{

int i;
double ss = 1.2;
/* --Align;;var:a,b,c;; */
for (i=0; i<n; i++)

a[i] = b[i] + ss*c[i];
/* --end Align */

}

void triad(double *a, double *b, double *c, int n)
{
#pragma disjoint (*c,*a,*b)

int i;
double ss = 1.2;
/* --Align;;var:a,b,c;; */

if (((int)(a) | (int)(b) | (int)(c)) & 0xf == 0) {
__alignx(16,a);
__alignx(16,b);
__alignx(16,c);

for (i=0;i<n;i++) {
a[i] = b[i] + ss*c[i];

}
}
else {

for (i=0;i<n;i++) {
a[i]=b[i] + ss*c[i];

}
/* --end Align */

}

Argonne National
Laboratory Title / email

Simple annotation example: STREAM triad.c on BG/L

Size No Annotations
(MB/s)

Annotations (MB/s)

10 1920.00 2424.24

100 3037.97 6299.21

500000 1291.81 1830.89

1000000 1282.12 1442.17

2000000 1282.92 1415.52

1000 3341.22 8275.86

10000 1290.81 3717.88

50000 1291.52 3725.48

100000 1291.77 3727.21

5000000 1290.81 1446.48

2.5X

2.9X

1.12X

Argonne National
Laboratory Title / email

Summary
� Provide tools to help computational scientists build transportable,

high-performance applications by working with, not against the
compiler

� Enable an ecosystem so that tools can compete
– Enables and rewards research and development

� Lowers the barrier to introducing more complex data structures and
algorithms

� And don’t forget the I/O!

	Overcoming the Barriers to Sustained Petaflop Performance
	But First…
	Where will we get (Sustained) Performance?
	Realistic Measures of Peak Performance�Sparse Matrix Vector Product�One vector, matrix size, m = 90,708, nonzero entries nz =
	Very Few Compilers do well on DGEMM (n=500)
	Effect of code transformations for uni-processor performance
	Performance for Real Applications
	Possible solutions
	Annotations
	Examples of the Challenges
	A fast DGEMM (sample)
	Performance of Matrix-Matrix Multiplication �(MFlops/s vs. n2; n1 = n2; n3 = n2*n2)�Intel Xeon 2.4 GHz, 512 KB L2 Cache, Intel
	Observations
	Key Observations
	One Possible Approach
	Annotations example: STREAM triad.c for BG/L
	Simple annotation example: STREAM triad.c on BG/L
	Summary

