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Overview

• Preliminaries
• Post Mortem Sampling (Rice)
• Adaptive Sampling (RENCI)
• Scalability Diagnosis Using Profiling 

(Rice)



The I/O Issue and Scaling.

• Seymour Cray (1976): 
– I/O has certainly been lagging the last decade.

• D. Kuck (1988): 
– Also, I/O needs lots of work.

• Dave Patterson (1994): 
– Terabytes >> Teraflops or Why Work on 

Processors When I/O is Where the Action is? 

•Seymour Cray (maybe Ken Batcher):  
–A supercomputer is a device that turns a 
compute-bound problem into an I/O-bound 
problem.



A “Real” WRF problem on BG/L
LEAD 27 Km data, 84 hour simulation. 

32 BG/L processors(CO mode)
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LEAD 27 Km data, 84 hour simulation. 
32 BG/L processors(CO mode)
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• WRF run for LEAD :  CONUS 27km grid, 84 simulated hours, 
hourly  simulation output, checkpoint every 12 simulated hours.
•NetCDF used for I/O.



Speedup and efficiency of WRF on BG/L
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• Four classes of iterations:  1 & 2 just compute, 3 & 4 do file I/O using NetCDF.
• Computation scales reasonably well.  I/O does not scale at all.
• What about weak scaling, i.e. run on a “petascale challenge input”: 

• With a bigger problem, the computation will scale better on more processors.
• With a bigger problem on more data, I/O will be even more of a bottleneck.

• Procurement benchmarks:  Write output only once, at the end of the run.



WRF on XT3

FIG X-2. LEAD 27 KM data, 84 hour simulation.
Cray XT3
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FIG X-2. LEAD 27 KM data, 84 hour simulation.
Cray XT3
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Summary of WRF Results.
FIG X-7 Time to Solution
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Takeaway messages

I/O continues to be the elephant in the room.
Use alternatives to NetCDF, but this doesn’t make the 

problem go away.

“Good” news:  An ensemble of 50 WRF runs is a lot 
more useful than a 50X bigger single run.

(SC06 BOF on Petascale Performance Eval.  Wed 5PM) 



Performance/Productivity at the High End:
Optimization in multiple dimensions

On-node issues:
memory, ILP, CLP,
…

System-wide
parallel efficiency

Software development,
maintenance, reliability

Power

Reliability

Algorithmic
issues



The HPCToolkit Manifesto
• Focus on real problems:  diagnosis for tuning, …
• Use Event Based Sampling (EBS)

– Low, controllable overhead (2K-5K samples/sec for 
<2%)

– No instrumentation calipers needed/wanted
• Overhead issue, e.g., >10 M procedure calls/sec
• Instrumention adds dependencies, serialization.

– Collect multiple metrics, compute others.
• CPI, Bus Utilization, Miss Rates, Lost Cycles

• Hierarchical correlation with source
– Attribution to source line granularity

• Flat or call stack attribution
• Time-varying  behavior - epochs
• Driven from scripts
• Top-down analysis encouraged



Management Issue: 
EBS on Petascale Systems

• Hardware on BG/L and XT3 both support 
event based sampling.

• Current OS kernels from vendors do not 
have EBS drivers.

• This needs to be fixed!
– Linux/Zeptos?  Plan 9?

• Issue:  Does event-based sampling 
introduce “jitter”?
– Much less impact than using fine-grain calipers.
– Not unless you have much worse performance 

problems.



Overview

• Preliminaries
• Post Mortem Sampling (Rice)

– Adam Bordelon, Bradley Broom, R Fowler

• Adaptive Sampling (RENCI)
• Scalability Diagnosis Using Profiling 

(Rice)



Problem:  Profiling Parallel Programs
• Sampled profiles can be collected for about 1% 

overhead.
• How can one productively use profiling on large parallel 

systems?
– Understand the performance characteristics of the 

application.
– Explain node-to-node variation.

• Model and understand systematic variation.
– Characterize intrinsic, systemic effects in app.

• Identify anomalies: app. bugs, system effects.
– Automate everything.

• Do little “glorified manual labor” in front of a GUI.
• Find/diagnose unexpected problems, not just the expected 

ones.
– Avoid the “10,000 windows” problem.



Statistical Analysis: Bi-clustering
• Data Input:  an M by P (dense) matrix of values.

– P columns, one for each process(or).
– M rows, one for each measure at each source construct.

• Problem:  Identify bi-clusters.
– Identify a group of processors that are different from the 

others because they are “different” w.r.t. some set of 
metrics.  Identify the set of metrics.

– Identify multiple bi-clusters until satisfied.
• “Cancer Gene Expression Problem” (Data Mining)

– The columns represent patients/subjects
• Some are controls, others have different, but related cancers.

– The rows represent data from DNA micro-array chips.
– Which (groups of) genes correlate (+ or -) with which 

diseases?
– There’s a lot of published work on this problem.
– So, use the bio-statisticians’ code as our starting point.

• “Gene shaving” algorithm by M.D. Anderson and Rice 
researchers applied to profiles collected using HPCToolkit.
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Cluster #1 (raw)

Weight Clone ID 
-6.39088 sweep.f,sweep:260 
-7.43749 sweep.f,sweep:432
-7.88323 sweep.f,sweep:435
-7.97361 sweep.f,sweep:438
-8.03567 sweep.f,sweep:437
-8.46543 sweep.f,sweep:543 
-10.08360 sweep.f,sweep:538
-10.11630 sweep.f,sweep:242
-12.53010 sweep.f,sweep:536
-13.15990 sweep.f,sweep:243
-15.10340 sweep.f,sweep:537
-17.26090 sweep.f,sweep:535

if (ew_snd .ne. 0) then
call snd_real(ew_snd, phiib, nib, ew_tag, info)

c        nmess = nmess + 1
c        mess = mess + nib

else
if (i2.lt.0 .and. ibc.ne.0) then

leak = 0.0
do mi = 1, mmi

m = mi + mio
do lk = 1, nk

k = k0 + sign(lk-1,k2)
do j = 1, jt

phiibc(j,k,m,k3,j3) = phiib(j,lk,mi)
leak = leak

&             + wmu(m)*phiib(j,lk,mi)*dj(j)*dk(k)
end do
end do
end do
leakage(1+i3) = leakage(1+i3) + leak

else
leak = 0.0
do mi = 1, mmi
m = mi + mio

do lk = 1, nk
k = k0 + sign(lk-1,k2)

do j = 1, jt
leak =leak+ wmu(m)*phiib(j,lk,mi)*dj(j)*dk(k)
end do
end do
end do

leakage(1+i3) = leakage(1+i3) + leak
endif

endif

if (ew_rcv .ne. 0) then

call rcv_real(ew_rcv, phiib, nib, ew_tag, info)
else

if (i2.lt.0 .or. ibc.eq.0) then
do mi = 1, mmi
do lk = 1, nk
do j = 1, jt
phiib(j,lk,mi) = 0.0d+0

end do
end do
end do

Cluster 1: 62% of variance in Sweep3D



Cluster 2: 36% of variance

Weight Clone ID 
-6.31558 sweep.f,sweep:580 
-7.68893 sweep.f,sweep:447
-7.79114 sweep.f,sweep:445
-7.91192 sweep.f,sweep:449
-8.04818 sweep.f,sweep:573
-10.45910 sweep.f,sweep:284 
-10.74500 sweep.f,sweep:285
-12.49870 sweep.f,sweep:572
-13.55950 sweep.f,sweep:575
-13.66430 sweep.f,sweep:286
-14.79200 sweep.f,sweep:574

if (ns_snd .ne. 0) then
call snd_real(ns_snd, phijb, njb, ns_tag, info)

c       nmess = nmess + 1
c       mess = mess + njb

else
if (j2.lt.0 .and. jbc.ne.0) then
leak = 0.0
do mi = 1, mmi

m = mi + mio
do lk = 1, nk

k = k0 + sign(lk-1,k2)
do i = 1, it

phijbc(i,k,m,k3) = phijb(i,lk,mi)
leak = leak + weta(m)*phijb(i,lk,mi)*di(i)*dk(k)

end do
end do
end do

leakage(3+j3) = leakage(3+j3) + leak
else
leak = 0.0
do mi = 1, mmi

m = mi + mio
do lk = 1, nk

k = k0 + sign(lk-1,k2)
do i = 1, it

leak = leak + weta(m)*phijb(i,lk,mi)*di(i)*dk(k)
end do
end do
end do

leakage(3+j3) = leakage(3+j3) + leak
endif

endif
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Cluster #2 (raw)

c J-inflows for block (j=j0 boundary)
c

if (ns_rcv .ne. 0) then
call rcv_real(ns_rcv, phijb, njb, ns_tag, info)

else
if (j2.lt.0 .or. jbc.eq.0) then

do mi = 1, mmi
do lk = 1, nk
do i = 1, it
phijb(i,lk,mi) = 0.0d+0

end do
end do
end do



Overview

• Preliminaries
• Post Mortem Sampling (Rice)
• Adaptive Sampling (RENCI)

– Todd Gamblin, Dan Reed, Rob Fowler

• Scalability Diagnosis Using Profiling 
(Rice)



Problem: Low-overhead performance monitoring and 
characterization of large-scale scientific applications

Approach: 
1. Use clustering algorithms to discover behavioral 

equivalence classes of nodes in scientific applications.  

2. Discovered classes provide insight into application 
behavior across nodes.  

3. Variance of monitored data within classes is also low, 
and we exploit this property to reduce monitoring 
overhead. 

Recall the Parallel I/O problem



Adaptive Sampling

• For large clusters, cannot examine 
performance data from all nodes
• Centralized collection is impossible at 

scale!

• We’ve developed the Adaptive 
Monitoring and Profiling Library (AMPL) 

– Models parallel application as a 
population of runtime performance events

– User specifies desired confidence and 
error in advance

• Uses population sampling to estimate 
performance metrics

– We give a probabilistic guarantee that 
confidence and error will be met



Adaptive Sampling

• Given:
– Desired confidence
– Desired minimum error

• Based on variance of collected 
data:

– Determine the minimum 
number of events to sample

• Collect data from just enough 
nodes that minimum number of 
events are collected

• Update sample size as 
monitoring proceeds, 
depending on variance

• Updates are done at the end of 
fixed time windows

m =
Nsr

2

N
2
V 2 + sr

2 V =
d
zα

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

Exhaustive

Monitoring M out of 
M nodes

Monitoring m out of 
M nodes

For N performance events, error d, and 
confidence interval zα

Sampled



Results with sPPM
 

• 5-14% of data overhead with PAPI counter (caliper) 
measurement with sPPM at 90% confidence and 8% accuracy

• 7-14% of overhead at 99% confidence and 1% error for low-
variance metrics



Clustering

Clustering
(k-medoids, CLARA)

Different colored regions
can be monitored separately

Per-node, per-metric
Application Signatures



Guided Stratification

• We know from above that number of nodes sampled depends on 
variance of monitored data

• Adaptive sampling can be improved by stratifying population
• Total nodes sampled will be smaller if variance within monitored 

groups is less than variance between them:

• Intuitively, sample size is lower when sum of intra-group 
variances is smaller than variance of population as a 
whole

1
M

(M − Mi)Si
2

i=1

k∑ < Mii=1

k∑ (Y i −Y )2



Guided Stratification
• Procedure:

– Cluster per-node application 
signatures

– Use output of clustering to separate 
nodes into behavioral equivalence 
classes

– Re-run sampling with this new 
stratification

• 2 benefits:
– Adaptively sampling groups separately 

can further reduce overhead in 
number of nodes sampled

– Provides a longitudinal behavioral 
picture of an application’s performance 
that isn’t possible with other tools

Each discovered equivalence class is monitored separately,
Total number of monitored nodes is reduced further

Subgroups have lower variance than group as a whole, 
so total number of sampled nodes is decreased.



Monitoring PAPI Metrics in sPPM:
Monitored Sample Sizes for 1-16 clusters

• Clustering done on raw data here (exhaustive trace)
• 99% confidence, 1% error

Sample size vs number of clustered strata for PAPI metrics 
done on raw data)

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Cluste

L2 total cache misse

L2 load misses

Inclusive Sec

Instruction TLB miss

Data TLB misses



Work in Progress

• Extensions of Existing Work:
– Precise measurement of overhead and perturbation of 

applications
– Tests at larger scale (>1024 nodes)
– Tests with more applications (ADCIRC, Chombo)

• Additions:
– Clustering on sampled data rather than exhaustive data
– Dynamic repartitioning of nodes in response to runtime phase 

changes
– Learning methods for selecting most relevant metrics to partition 

on
– Use a distributed model-checking approach to partition nodes 

into clusters, to find outliers in existing groups, and to redefine 
clusters.



Overview

• Preliminaries
• Post Mortem Sampling (Rice)
• Adaptive Sampling (RENCI)
• Scalability Diagnosis Using Profiling 

(Rice)
– Cristian Coarfa, Nathan Froyd, Fengmei

Zhao, John Mellor-Crummey



Impediments to Scalability 

• Communication overhead
– synchronization
– data movement

• Load imbalance
• Serialization
• Algorithmic scaling

– e.g. reductions: time increases as O(log
P)

– partially replicated computation
– replicated initialization



Motivating Example
CAF NAS SP size 643 on an Itanium2+Myrinet cluster

Higher is better



Motivation, Part 2
CAF NAS SP size 643 on an Itanium2+Myrinet cluster



Goal
Automatic technique for pinpointing and 

quantifying scalability problems

• What’s important: overall impact on 
running time
– not absolute scaling

• Want a tool that
– analyzes scalability
– guides user to the problems



Strategy
• Use call path profiling to measure 

executions
– attribute costs to full calling context
– method: call stack sampling [Froyd et. al ICS 05]

• monitor unmodified fully optimized code
– language independent C/C++, Fortran, assembly 

code, …
• supports parallel and serial codes

– CAF, UPC, MPI, …
• efficient (1K samples per second ~ 3-5% overhead)

• Use differential comparisons of profiles to 
compute a scalability metric for each 
calling context



Two Costs of Interest 

subroutine foo
…
do i = 1, n

c[i]=a[i]+alpha*b[i]
end do
call bar()
call baz()

end subroutine

exclusive cost

inclusive cost

• Exclusive cost: local computation
• Inclusive cost: self cost + inclusive cost of 

callees



How to compare profiles

Performance Analysis with Expectations

• Users have performance expectations for codes
– strong scaling: linear speedup
– weak scaling: constant execution time
– sequential codes: scale w.r.t. inputs

• e.g. compiler analysis should scale ~linearly w/ program size 

• Putting expectations to work
– measure performance under different conditions

• e.g. different levels of parallelism or different inputs
– define our expectations 
– compute the deviation from expectations for each calling 

context
• for both inclusive and exclusive costs

– correlate the metrics with the source code 
– explore the annotated call tree interactively



Relative Scalability

• Parallel program P
• Two experiments: 

– Ep on p CPUs
– Eq on q CPUs

• Total execution times Tp and Tq
• Consider m a node in the call tree
• Cp(m), Cq(m) costs of m on p, q CPUs

• Expectation:

• Fraction of excess work :

q

pq

Tq
mCpmCq

mEW
×

×−×
=

)()(
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)()( mC
q
pmC pq =



Ensemble of Parallel 
Experiments

• Program P
• Ensemble of experiments Ei on pi CPUs, 

i=1..n
• Ti - total execution time of experiment Ei

• For a node m in the call tree
– cost of m on pi processors

• Expectation:

• Fraction of excess work: 
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Strong scaling



Strong Scaling Analysis
Measurement and analysis of calling contexts



Strong Scaling Analysis
Exploration of annotated call tree



LBMHD Size 10242





LBMHD size 10242

Higher is better

25% gain 
on 64 CPUs

efficient 
reductions
yield



Conclusion: Scalability Analysis 
through Differential Profiling

• Scalability analysis with expectations
– automatically diagnose scalability impediments
– independent of programming model
– fraction of excess work scalability metric

• dimensionless metric with ubiquitous applicability
– attribution to calling context enables precise diagnosis of 

bottlenecks

• Future plans: use expectations to explore 
– scalability issues with MPI-2
– weak scaling 
– algorithmic scaling w.r.t. various input parameters



Summary

• Multiple, related efforts at Rice and 
RENCI
– Efficient on-node measurement with EBS
– Exhaustive post mortem analyses

• Biclustering using HPM and derived data
• Differential profiling for scalability analysis

– Incremental analyses
• Stratified sampling for data collection
• Distributed model-checking for cluster 

identification



Contact Information

Rob Fowler
rjf@renci.org, rjf@unc.edu
919 445 9670

RENCI
http://www.renci.org/

mailto:rjf@renci.org
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http://www.renci.org/
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