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Overview

e Preliminaries

e Post Mortem Sampling (Rice)

e Adaptive Sampling (RENCI)

e Scalability Diagnosis Using Profiling
(Rice)
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The 1/0 Issue and Scalin

g.

e Seymour Cray (1976):
— 1/0 has certainly been lagging the last decade.

e D. Kuck (1988):

— Also, 1/0 needs lots of work.

e Dave Patterson (1994):
— Terabytes == Teraflops or Why Work on
Processors When 1/0 is Where the Action i1s?
«Seymour Cray (maybe Ken Batcher):

—A supercomputer is a device that turns a
compute-bound problem into an 1/0-bound
problem.
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A “Real” WRF problem on BG/L

LEAD 27 Km data, 84 hour simulation.
32 BG/L processors(CO mode)
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* WRF run for LEAD : CONUS 27km grid, 84 simulated hours,
hourly simulation output, checkpoint every 12 simulated hours.

*NetCDF used for 1/0O.
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Speedup and efficiency of WRF on BG/L
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» Four classes of iterations: 1 & 2 just compute, 3 & 4 do file 1/0 using NetCDF.
» Computation scales reasonably well. 1/0 does not scale at all.
* What about weak scaling, i.e. run on a “petascale challenge input”:
» With a bigger problem, the computation will scale better on more processors.
» With a bigger problem on more data, I/O will be even more of a bottleneck.
- Procurement benchmarks: Write output only once, at the end of the run.
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WRF on XT3

FIG X-2. LEAD 27 KM data, 84 hour simulation.

Cray XT3
6000

5000

4000

3000

2000

Number of lterations

1000

0 1 2 3 4
Time (sec)
|—XT3-32 — XT364  XT3-128 — XT3-256 — XT3-512 — XT3-1024 |

i A
%Qﬂﬁ!m L | ovwcein & ] ACS| g




B s S 5
Summary of WRF Results.

FIG X-7 Time to Solution
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Takeaway messages

1/0 continues to be the elephant in the room.

Use alternatives to NetCDF, but this doesn’t make the
problem go away.

“Good” news: An ensemble of 50 WRF runs is a lot
more useful than a 50X bigger single run.

(SC06 BOF on Petascale Performance Eval. Wed 5PM)
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Performance/Produchty at the High End
Optimization in multiple dimensions

Reliability

Software development,

maintenance, reliability
On-node issues:

memory, ILP, CLP, System-wide
parallel efficiency

Algorithmic
Issues

Power
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The HPCToolkit Manifesto

Focus on real problems: diagnosis for tuning,

Use Event Based Sampling (EBS)
— Low, controllable overhead (2K-5K samples/sec for
<2%)
— No instrumentation calipers needed/wanted
e Overhead issue, e.g., >10 M procedure calls/sec
e Instrumention adds dependencies, serialization.
— Collect multiple metrics, compute others.
e CPI, Bus Utilization, Miss Rates, Lost Cycles
Hierarchical correlation with source
— Attribution to source line granularity
Flat or call stack attribution
Time-varying behavior - epochs
Driven from scripts
Top-down analysis encouraged




EBS on Petascale Systems

e Hardware on BG/L and XT3 both support
event based sampling.

e Current OS kernels from vendors do not
have EBS drivers.

e This needs to be fixed!
— Linux/Zeptos? Plan 9?

e Issue: Does event-based sampling
Introduce “jitter”?
— Much less impact than using fine-grain calipers.

— Not unless you have much worse performance
problems.
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Overview

e Preliminaries

e Post Mortem Sampling (Rice)
— Adam Bordelon, Bradley Broom, R Fowler

e Adaptive Sampling (RENCI)
e Scalability Diagnosis Using Profiling
(Rice)
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Problem: Profiling Parallel Programs

e Sampled profiles can be collected for about 1%6
overhead.
e How can one productively use profiling on large parallel
systems?
— Understand the performance characteristics of the
application.

— Explain node-to-node variation.

e Model and understand systematic variation.
— Characterize intrinsic, systemic effects in app.

e ldentify anomalies: app. bugs, system effects.
— Automate everything.
e Do little “glorified manual labor” in front of a GUI.

e Find/diagnose unexpected problems, not just the expected
ones.

— Avoid the “10,000 windows” problem.
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Statistical Analysis: Bi-clustering

e Data Input: an M by P (dense) matrix of values.
— P columns, one for each process(or).
— M rows, one for each measure at each source construct.
 Problem: Identify bi-clusters.
— Identi% a group of processors that are different from the
others because they are “different” w.r.t. some set of

metrics. ldentify the set of metrics.

— ldentify multiple bi-clusters until satisfied.

e “Cancer Gene Expression Problem” (Data Mining)
— The columns represent patients/subjects
e Some are controls, others have different, but related cancers.
— The rows represent data from DNA micro-array chips.

— Which (groups of) genes correlate (+ or -) with which
diseases?

— There’s a lot of published work on this problem.
— SO0, use the bio-statisticians’ code as our starting point.

e “Gene shaving” algorithm bP/ M.D. Anderson and Rice
researchers applied to profiles collected using HPCToolkit.
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ArhWNEFLO

Cluster 1: 6290

Cluster #1 (raw)

O NM<TLO

Weight
-6.39088
-7.43749
-7.88323
-7.97361
-8.03567
-8.46543
-10.08360
-10.11630
-12.53010
-13.15990
-15.10340
-17.26090

Clone ID
sweep.f,sweep:260
sweep.f,sweep:432
sweep.f,sweep:435
sweep.f,sweep:438
sweep.f,sweep:437
sweep.f,sweep:543
sweep.f,sweep:538
sweep.f,sweep:
sweep.f,sweep:536
sweep.f,sweep:
sweep.f,sweep:537
sweep.f,sweep:535
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of variance in Sweep3D

if (ew_snd .ne. 0) then
call snd_real(ew_snd, phiib,
nmess = nmess + 1
c mess = mess + nib
else
if (i2.1t.0 .and.
leak = 0.0
domi =1, mmi
m = mi + mio
do bk = 1, nk
k = kO + sign(lk-1,k2)
do j =1, jt
phiibc(j,k,m,k3,j3) =
leak = leak
& + wmu(m)*phiib(J, Ik, mi)*dj () *dk(k)
end do
end do
end do
leakage(1+i3) =
else
leak = 0.0
domi =1, mmi
m = mi + mio
do bk = 1, nk
k = kO + sign(lk-1,k2)
doj=1, jt
leak =leak+ wmu(m)*phiib(j,Ik,mi)*dj(G)*dk(k)
end do
end do
end do
leakage(1+i3) =
endif
endif

nib, ew_tag, info)

0

ibc.ne.0) then

phiib(j, Ik,mi)

leakage(1+i13) + leak

leakage(1+i3) + leak

if (ew_rcv .ne. 0) then

call rcv_real(ew_rcv, phiib,
else

nib, ew_tag, info)
if (i2.1t.0 .or. ibc.eq.0) then

do mi = 1, mmi
do Ik 1, nk
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GRrWNEFO

Clust 2: 36%20 of variance

Cluster #2 (raw)

O NMT O

Weight
-6.31558
-7.68893
-7.79114
-7.91192
-8.04818
-10.45910
-10.74500
-12.49870
-13.55950
-13.66430
-14.79200

Clone ID
sweep.f,sweep:580
sweep.f,sweep:447
sweep.f,sweep:445
sweep.f,sweep:449
sweep.f,sweep:573
sweep.f,sweep:
sweep.f,sweep:
sweep.f,sweep:572
sweep.f,sweep:575
sweep.f,sweep:
sweep.f,sweep:574
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if (ns_snd .ne. 0) then
call snd_real(ns_snd, phijb, njb, ns_tag, info)
c nmess = nmess + 1
c mess = mess + njb
else
if (J2.1t.0 .and. jbc.ne.0) then
leak = 0.0
do mi = 1, mmi
m = mi + mio

do Ik = 1, nk
k = kO + sign(1k-1,k2)
doi=1, it
phijbc(i,k,m,k3) = phijb(i,lk,mi)
leak = leak + weta(m)*phijb(i,lk,mi)*di(i)*dk(k)
end do
end do
end do
leakage(3+j3) =
else
leak = 0.0
domi =1, mmi
m = mi + mio
do Ik = 1, nk
k = kO + sign(lk-1,k2)
doi=1, it
leak = leak + weta(m)*phijb(i,lk,mi)*di(i)*dk(k)
end do
end do
end do
leakage(3+j3) =
endif
endif

leakage(3+j3) + leak

leakage(3+j3) + leak

c J-inflows for block (J=jJO0 boundary)
c
if (ns_rcv .ne. 0) then
call rcv_real(ns_rcv, phijb,
else
ifT (J2.1t.0 .or. jhc.eq.-0) then
do mi = 1, mmi

njb, ns_tag, info)

end
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Overview

e Preliminaries
e Post Mortem Sampling (Rice)

e Adaptive Sampling (RENCI)
— Todd Gamblin, Dan Reed, Rob Fowler

e Scalability Diagnosis Using Profiling
(Rice)
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Problem: Low-overhead performance monitoring and
characterization of large-scale scientific applications

Recall the Parallel I/O problem

roach:
Use clustering algorithms to discover behavioral
equivalence classes of nodes in scientific applications.

App
1

N

enci M| . O | ACS| o

Discovered classes provide insight into application
behavior across nodes.

Variance of monitored data within classes Is also low,
and we exploit this property to reduce monitoring
overhead.

Renaissance Computing Institute
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Adaptive Sampling

 For large clusters, cannot examine
performance data from all nodes
» Centralized collection is impossible at
scale!

|  We've developed the Adaptive

| Monltorlng and Profiling Library (AMPL)

NN
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Models parallel application as a
population of runtime performance events

— User specifies desired confidence and
error in advance

* Uses population sampling to estimate
performance metrics
— We give a probabilistic guarantee that
confidence and error will be met

SciDAC

Scientific Discovery
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Adaptive Sampling

Exhaustive Sampled

#.

Monitoring M out of Monitoring m out of
M nodes M nodes

NSr2 d 2
N N A2s e V=l
N V+s

For N performance events, error d, and
confidence interval z,

Rena:ssance Computing Institute
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Given:
— Desired confidence
— Desired minimum error

Based on variance of collected

data:
— Determine the minimum
number of events to sample

Collect data from just enough
nodes that minimum number of
events are collected

Update sample size as
monitoring proceeds,
depending on variance

» Updates are done at the end of
fixed time windows

SciDAC

cientific Discovery




Predicted Minimum Sample Size (Nodes)

Results with sPPM

Average Sample Sizes Pradicted by AMPL

150
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e
o
o

Perlormance Metries &

I 20 Confidence, 8% Error
[ 552 Confidence, 4% Error
[ 9% Confidence, 3% Error
I 257 Confidence, 1% Error

e 5-149 of data overhead with PAPI counter (caliper)
measurement with sPPM at 90% confidence and 8% accuracy

e 7-149% of overhead at 99% confidence and 1% error for low-

variance metrics
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Guided Stratification

 We know from above that number of nodes sampled depends on
variance of monitored data

« Adaptive sampling can be improved by stratifying population

» Total nodes sampled will be smaller if variance within monitored
groups is less than variance between them:

%Z;(M ~M,)S? < Z;Mi(\?i ~Y)?

 Intuitively, sample size is lower when sum of intra-group
variances is smaller than variance of population as a
whole

Beonci = oo, 8 N
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Guided Stratification

 Procedure:

— Cluster per-node application
signatures

— Use output of clustering to separate
nodes into behavioral equivalence
classes

— Re-run sampling with this new
stratification

NG

2 benefits:

— Adaptively sampling groups separately
can further reduce overhead in
number of nodes sampled

Each discovered equivalence class is monitored separately,
Total number of monitored nodes is reduced further — Provides a longitudinal behavioral
picture of an application’s performance

Subgroups have lower variance than group as a whole, that isn’t possible with other tools

so total number of sampled nodes is decreased.

Rena:ssance Computing Institute
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Monitoring PAPI Metrics in sPPM:
Monitored Sample Sizes for 1-16 clusters

Sample size vs number of clustered strata for PAPI metrics

done on raw data)

300

2501y

—{-=|2 total cache misse

200
150+
100+

50

—fll—_2 load misses
Inclusive Sec

=3¢ nstruction TLB mis:
=3}=Data TLB misses

1 2 3 45 6 7 8 9 1011 12 13 14 15 16

Number of Clusts

e Clustering done on raw data here (exhaustive trace)

e 9996 confidence, 1906 error
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Work In Progress

Extensions of Existing Work:

— Precise measurement of overhead and perturbation of
applications

— Tests at larger scale (>1024 nodes)

— Tests with more applications (ADCIRC, Chombo)

Additions:

— Clustering on sampled data rather than exhaustive data

— Dynamic repartitioning of nodes in response to runtime phase
changes

— Learning methods for selecting most relevant metrics to partition
on

— Use a distributed model-checking approach to partition nodes
into clusters, to find outliers in existing groups, and to redefine
clusters.
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Overview

e Preliminaries

e Post Mortem Sampling (Rice)

e Adaptive Sampling (RENCI)

e Scalability Diagnosis Using Profiling
(Rice)

— Cristian Coarfa, Nathan Froyd, Fengmeli
Zhao, John Mellor-Crummey
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Impediments to Scalability

e« Communication overhead
— synchronization
— data movement

e Load imbalance
e Serialization

e Algorithmic scaling

— e.g. reductions: time increases as O(log
P)

— partially replicated computation

— replicated initialization
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Motivating Example
CAF NAS SP size 643 on an Itanlum2+Myr|net cluster

g -B— IVIF’I
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Relative cost

Motivation, Part 2

CAF NAS SP size 642 on an Itanium2+Myrinet cluster

100%

90%

80%

70%

60%

50%

40%

30%

20%

10% -

0%

4 9 16 25 36
Number of processors

armci_notify

49

64

M other comm
ARMCI_Fence

" ARMCI_Barrier

" ARMCI_Wait

' ARMCI_NbGetS
ARMCI_GetS
ARMCI_NbGet
ARMCI_Get

I ARMCI_NbPuts
ARMCI_PutS

B ARMCI_NbPut

M ARMCI_Put

B armci_notify_wait
armci_notify
ARMCI_Finalize

B ARMCI_Init

I computation

AC

Iscovery



Goal

Automatic technique for pinpointing and
quantifying scalability problems

e What’s important: overall impact on
running time
— not absolute scaling

e Want a tool that

— analyzes scalability
— guides user to the problems

Renaissance Computing Institute




Strategy

e Use call path profiling to measure
executions
— attribute costs to full calling context
— method: call stack sampling [Froyd et. al ICS 05]

e monitor unmodified fully optimized code

— language independent C/C++, Fortran, assembly
code, ...

e supports parallel and serial codes
— CAF, UPC, MPI, ...

» efficient (1K samples per second — 3-5% overhead)

e Use differential comparisons of profiles to
compute a scalability metric for each
calling context

Beonci = oo, 8 N
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Two Costs of Interest

e Exclusive cost: local computation

e Inclusive cost: self cost + Inclusive cost of
callees

subroutine foo

do 1 =1, n  exclusive cost
cli]=a[1]+alpha*b[1]
end do
call bar()
call baz()

end subroutine

Inclusive cost




How to compare profiles

Performance Analysis with Expectations

e Users have performance expectations for codes
— strong scaling: linear speedup
— weak scaling: constant execution time
— seqgquential codes: scale w.r.t. inputs
e e.g. compiler analysis should scale ~linearly w/ program size

e Putting expectations to work
— measure performance under different conditions
e e.g. different levels of parallelism or different inputs
— define our expectations

— compute the deviation from expectations for each calling
context

e for both inclusive and exclusive costs
— correlate the metrics with the source code
— explore the annotated call tree interactively

» SciDAC

Scientific Discovery
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Relative Scalability

Parallel program P

Two experiments:

— E,on p CPUs

= E on g CPUs

Total execution times T, and T,

e Consider m a node in the call tree
- C,(m), C,(m) costs of m on p, q CPUs

Expectation: Cq (m) = EC ) (m)

Fraction of excess work : ‘EW (m) _ qx xC (m) TpxCp(m)
g X

n ’ 22 | rusuNiveRsITY g F".
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Ensemble of Parallel
Experiments

e Program P

e Ensemble of experiments E; on p; CPUs,
I=1..n

e T, - total execution time of experiment E;

e For a node m in the call tree
— C,(m) cost of m on p; processors

c, <m>=%cpl<m>

e Expectation:

3 (p,%C, (M) pyxC,, (M)
e Fraction of excess work: EW(m)=-= ST pxT
) =2 Mi i
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Strong Scaling Analysis

Measurement and analysis of calling contexts

p, CPUs p, CPUs p, CPUs
Binary Binary Binary
cﬂl' mck cﬂ'l mck llllllllllllllllllllll call mck
profile data profile data profile data

p, XML XML p. XML
proﬁla data le data proﬁm data |
IAEW /| EAEW

database

THE UNIVERSITY l—-
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Strong Scaling Analysis

Exploration of annotated call tree

IAEW / EAEW

database
Scalability-annotated
calltrees
P, XML
profile data

N
ReNncl .
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Relative cost
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ARMCI_Fence
ARMCI_Barrier
ARMCI_Wait
ARMCI_NbGetS
ARMCI_GetS
ARMCI_NbGet
ARMCI_Get
ARMCI_NbPuts
ARMCI_PutS
ARMCI_NbPut
ARMCI_Put
armci_notify_wait
armci_notify
ARMCI_Finalize
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File

pyfusersiceristi/Researchice cal-experimentsibin/mhd;caf-0111,

(- [O]X]

mhd.cafclt;nép.wzf.f
O 1== PROGRAM mhd -
Scopes E:?;I N # samples IAEW T EAEW %
| & rmihd 3.76e05 1000 [0, 32e00 =0, 0000
¢4k Fhcl CATCTMp w2 T T 28 T = O A I == (1, O0Bll)
| o= 4k decomp 5.55e04 14.7% [0,.08e00 0, 08e00
¢ 4 mhd.cafctmp.wm 19 T.65e0d 20, 3% [0.06e00 0. 00e00
o= g stream F.B5e04 20, 3% [ 005800 1, Q)
g4 mhd. cafctmpow2f.f. 242 F.90e04 10, 4% | 006800 0, e
o= 4k cafinit_ 3.90e04 10.4% [Q.06e00 0, 00e00
¢ 4 mhd.cafctmp.wzf.f 15545 2.25e04  6.0% [0,03e00 0. 00e00
g 4k caf_allsum_dp 2.25e04  A.0% [0.03e00 0. 00e00
o MACLCArctmp.watr.T, LA13 ] . 2 hhp L
¢+ cafsynchall_ 1.20e04  3.2% [0.02e00 1, i)
o4 Communicationlnterface.co; 427 1.20e04  3.2% | 0.02e00 0, Q)
¢ 4+ ARMCICommunicationinterface:; cafSsymchald 1.20e04  3,2% | 0.0Z2e00 0, Q000
g4 ARMC|ICommunicationlnterface.cc; 1712 1.20e04 3, 2% | 0.02e00 0, 001200
o= 4 ARMCI_Barrier 1.20e0d4 3, 2% [0Q.02e00 0, D000
(- mhd.cafctmp.wmﬂ 4.50e03 1.2% [0.01e00 0, D) £
o= 4 mhd.cafctmp. w2f.f. 1670 4.50e03 1.2¥ | 0.00800 0, Q000 i
o= 4 mhd.cafctmp. w2f.f. 1727 1.50e03  O,4% [ 0,00e00 0. Q000
@ 4 mhd.cafctmpow2 . 244 T.90e03  2.0% [ 0.03e00 1, D e
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Conclusion: Scalability Analy
through Differential Profiling

e Scalability analysis with expectations
— automatically diagnose scalability impediments
— independent of programming model
— fraction of excess work scalability metric
e dimensionless metric with ubiquitous applicability

— attribution to calling context enables precise diagnosis of
bottlenecks

e Future plans: use expectations to explore
— scalability issues with MPI1-2
— weak scaling
— algorithmic scaling w.r.t. various input parameters
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Summary

e Multiple, related efforts at Rice and

RENCI
— Efficient on-node measurement with EBS
— Exhaustive post mortem analyses

e Biclustering using HPM and derived data

e Differential profiling for scalability analysis
— Incremental analyses

e Stratified sampling for data collection

e Distributed model-checking for cluster
Identification
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