
National Center for Supercomputing Applications

High-Performance
Computing on FPGAs

Challenges and Opportunities

Volodymyr Kindratenko
Innovative Systems Lab (ISL)

National Center for Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign (UIUC)

High-Performance Reconfigurable
Computing (HPRC)

• Gerald Estrin's idea of “fixed plus
variable structure computer”

– reconfigurable hardware is tailored to
perform a specific task

• as quickly as a dedicated piece of
hardware

– once the task is done, the hardware is
adjusted to do other tasks

– the main processor controls the behavior
of the reconfigurable hardware

• Field Programmable Gate Array
(FPGA) is the enabling technologyenabling technology

• FPGA vs. microprocessor
– Microprocessor

• fixed data path
• software must be customized to make use of

available busses and memory of the processor

– FPGA
• flexible data path
• on-chip connectivity can be customized to fit the

application

• IEEE Computer, March 2007
High-Performance Reconfigurable Computers are
parallel computing systems that contain multiple
microprocessors and multiple FPGAs. In current
settings, the design uses FPGAs as coprocessors that
are deployed to execute the small portion of the
application that takes most of the time—under the 10-
90 rule, the 10 percent of code that takes
90 percent of the execution time.

National Center for Supercomputing Applications

National Center for Supercomputing Applications

HPRC System Concept Overview
• Microprocessor • Reconfigurable

processor

microprocessormicroprocessor FPGAFPGA

memorymemorymemorymemory

commoncommon
memorymemory

communication channel (PCI, DIMM, FSB, HyperTransport, ...)communication channel (PCI, DIMM, FSB, HyperTransport, ...)

diskdisk

Example: Cray XD1 and XT4

XD1 XT4

National Center for Supercomputing Applications

Opteron
FPGA
LX200

SRAM

SRAM

PLD

PLD

SeaStar2

FPGA
LX200

FPGA
VP50

Opteron

Opteron

Rapid
Array

Rapid
Array

SRAM

Source: High-Performance Reconfigurable Supercomputing Architectures, IEEE Computer, pp.40-41, March 2007.

FPGAs in HPC: Key Benefits
• By customizing hardware to match application computing and

data needs, we can ‘build’ computers around applications rather
than ‘wrap’ applications around computers

• Higher sustained performance can be attained
– exploring inherent parallelism in algorithms

• spatial parallelism, instruction level parallelism
– matching computation with data flow

• Larger systems can be built with lower power budget
– Example: 4 Altera Stratix III EP3SE260 chips consume an equivalent of

Intel 3 GHz quad-core Xeon X5365 chip, thus giving a 5x performance
advantage for the same WATTs of power

• FPGAs still have a significant room to grow, offering a potential
for performance improvements over the microprocessors

National Center for Supercomputing Applications

FPGAs vs. Multicore Processors
Device Theoretical

Peak
(GFLOPS) (*)

‘Practical’
Peak

(GFLOPS)

Power
(WATT)

GFLOPS/
WATT(2)

Cost
($)

MFLOPS/
$

AMD 2.8 GHz dual-core
Opteron 8220 11.2 10.1(**) 95(') 0.1 1,266(') 8.0

Intel 3 GHz quad-core
Xeon X5365 24 21.6(**) 120(') 0.2 1,285(') 16.8

Xilinx Virtex4 LX200 15.9(†)(1)

(@185 MHz) 9.1(***) 25(2) 0.4 10,589('') 0.9

Xilinx Virtex5 LX330 28(†)(1)

(@237 MHz) 16(***) 30(2) 0.5 12,346('') 1.3

Altera Stratix II
EP2S180

25.2(‡)(2)

(@303 MHz) 14.4(***) 25(2) 0.6 10,688(''') 1.4

Altera Stratix III
EP3SE260

50.7(‡)(2)

(@363 MHz) 28.9(***) 30(2) 0.9

National Center for Supercomputing Applications

*) Add/multiply, double-precision floating-point (DP FP)
**) 90% of theoretical peak

***) 33% maximum frequency decrease and 15% logic remaining unused; (see ref 2 for details)
†) Implementing DP FP multipliers using both hard and soft multiplier cores
‡) Implementing DP FP multipliers with hard multiplier cores only
1) Dave Strenski, FPGA Floating Point Performance - a pencil and paper evaluation, HPCwire, January 12, 2007
2) Martin Langhammer, Double Precision Floating Point on FPGAs, RSSI, July 17-20, 2007
') http://www.pricewatch.com/cpu/ (as of 09/07/2007)

'') http://www.em.avnet.com/ (as of 09/07/2007)
''') http://www.altera.com/buy/buy-index.html (as of 09/07/2007)

Non-bonded Force-field Molecular
Dynamics Kernel Application Example

2.8 GHz Intel Xeon

• Compute time is ~9.28
seconds

• Dataset
– 92,224 atoms, 144 patches

100 MHz MAPE processor

• Execution time is ~3.07
seconds
– ~0.15 seconds due to data

DMA in/out and
– ~0.84 seconds due to MAP

function call overhead
– ~2.08 seconds due to

actual calculations

National Center for Supercomputing Applications

Source: V. Kindratenko, D. Pointer, A case study in porting a production scientific supercomputing application to
a reconfigurable computer, in Proc. IEEE Symposium on Field-Programmable Custom Computing
Machines - FCCM'06, 2006. pp. 13-22.

Two-point Angular Correlation
Function Application Example

Application kernel
for (i = 0; i < ((autoCorrelation) ? n1-1 : n1); i++)
{

double xi = data1[i].x, yi = data1[i].y, zi = data1[i].z;
for (j = ((autoCorrelation) ? i+1 : 0); j < n2; j++)
{

double dot = xi * data2[j].x + yi * data2[j].y + * data2[j].z;
register int k, min = 0, max = nbins;
if (dot >= binb[min]) data_bins[min] += 1;
else if (dot < binb[max]) data_bins[max+1] += 1;
else {

while (max > min+1) // run binary search
{

k = (min + max) / 2;
if (dot >= binb[k]) max = k;
else min = k;

};
data_bins[max] += 1;

}
}

}

CPU/FPGA performance

National Center for Supercomputing Applications

10

100

1000

10000

5000 25000 45000 65000 85000

Pe
rf
or
m
an
ce
 (M

FL
O
PS
)

dataset size

CPU dual‐MAP

8.01 GFLOPS on a
quad-FPGA SRC-6

83 MFLOPS on a
single-core 2.8 GHz

Intel Xeon

Source: V. Kindratenko, Accelerating Cosmology Applications: from 80 MFLOPS to 8 GFLOPS in 4 steps, SRC Users
meeting, July 2007.

FPGAs vs. Multicore Processors
Device Theoretical

Peak
(GFLOPS) (*)

‘Practical’
Peak

(GFLOPS)

Power
(WATT)

GFLOPS/
WATT(2)

Cost
($)

MFLOPS/
$

AMD 2.8 GHz dual-core
Opteron 8220 11.2 10.1(**) 95(') 0.1 1,266(') 8.0

Intel 3 GHz quad-core
Xeon X5365 24 21.6(**) 120(') 0.2 1,285(') 16.8

Xilinx Virtex4 LX200 15.9(†)(1)

(@185 MHz) 9.1(***) 25(2) 0.4 10,589('') 0.9

Xilinx Virtex5 LX330 28(†)(1)

(@237 MHz) 16(***) 30(2) 0.5 12,346('') 1.3

Altera Stratix II
EP2S180

25.2(‡)(2)

(@303 MHz) 14.4(***) 25(2) 0.6 10,688(''') 1.4

Altera Stratix III
EP3SE260

50.7(‡)(2)

(@363 MHz) 28.9(***) 30(2) 0.9

National Center for Supercomputing Applications

*) Add/multiply, double-precision floating-point (DP FP)
**) 90% of theoretical peak

***) 33% maximum frequency decrease and 15% logic remaining unused; (see ref 2 for details)
†) Implementing DP FP multipliers using both hard and soft multiplier cores
‡) Implementing DP FP multipliers with hard multiplier cores only
1) Dave Strenski, FPGA Floating Point Performance - a pencil and paper evaluation, HPCwire, January 12, 2007
2) Martin Langhammer, Double Precision Floating Point on FPGAs, RSSI, July 17-20, 2007
') http://www.pricewatch.com/cpu/ (as of 09/07/2007)

'') http://www.em.avnet.com/ (as of 09/07/2007)
''') http://www.altera.com/buy/buy-index.html (as of 09/07/2007)

FPGAs in HPC: Key Challenges
• The programming model

– Hardware design vs. software implementation methodologies
• More than just a tool or language issue: hardware design requires a different

way of thinking
• Even with the best C-to-HDL compilers, software developers must be “system-

aware” to extract any satisfactory performance
– Using FPGAs to accelerate common libraries

• Difficult to find libraries that are widely used in many applications
• Typical library subroutines are too “fine-grained” to benefit from FPGA

acceleration
• A more productive approach is to port small, but computationally intensive

application kernels rather than libraries
– Loose coupling between microprocessor and FPGA

• Applications are constrained by the I/O bandwidth and control transfer overhead
• ‘Detached’ execution model is not suitable for many applications

National Center for Supercomputing Applications

FPGAs in HPC: Key Challenges
• Tools

– Need for high-level languages capable of implementing both software and
hardware

• Existing tools, such as SRC Carte, are restricted to particular hardware
platforms

– Hardware synthesis and placing & routing compared to software
compilation is time-consuming

– Manual platform mapping is still required
• SW/HW partitioning, SW/HW interface, data transfer, synchronization among

FPGAs, use of memories, sequence of run-time reconfigurations, …
• Code and data flow profiling tools maturity

– Portability
• Application portability at the source code level is difficult to maintain among

HPRC products from the same hardware vendor (SRC-6/7 product line might be
the only exception) and it is virtually non-existent between HPRC platforms from
different vendors

National Center for Supercomputing Applications

Lessons Learned
• Porting an existing CPU-based code to an HPRC platform is considerably

more difficult than developing a new code specifically for running on an
HPRC system

– Requires an in-depth understanding of the code structure and data flow
– Code optimization techniques used in the microprocessor-based implementation are

not applicable for RC implementation
– Data flow schemes used in the microprocessor-based implementation in most cases

are not suitable for RC implementation
• Only some existing codes can be ported to an RC platform with relatively

minor modifications
– 90% of time is spent while executing 10% of the code

• Vast majority of the codes require significant restructuring in order to be
implementable on an HPRC platform

– No well-defined compute kernel
– Compute kernel is too large to fit on an FPGA
– Compute kernel operates on a small dataset or is called too many times

• function call overhead becomes an issue

Lessons Learned
• Most significant code acceleration can be achieved when developing the

code from scratch; code developer then has the freedom to
– structure the algorithm to take advantage of the RC platform organization and

resources,
– select most effective SW/HW code partitioning scheme, and
– setup data formats and data flow graph that maps well into RC platform resources

• Effective use of high-level programming languages/tools, such as MAP
C/Carte (SRC-6) and Mitrion-SDK/Mitrion-C (RC100), to develop code for
RC platform requires some limited hardware knowledge

– Memory organization and limitations
• Explicit data transfer and efficient data access

– On-chip resources and limitations
– RC architecture-specific programming techniques

• Pipelining, streams, …

FPGAs in HPC: Key Challenges
• Lack of standards

– CPU-FPGA hardware interface varies from vendor to vendor
• PCI, HyperTransport, DIMM, FrontSide Bus, …

– On-board memory type and layout vary from product to product
• Memory type, number of memory banks, memory bus width, memory

bandwidth, access patterns, …
– FPGA programming interface

• Each vendor provides its own API to interface with the FPGA co-processor
– High Level Languages that target FPGAs

• ImpulseC, DimeC, Mitrion-C, Handel-C, MAP-C, AccelChip, StreamC, Viva, …

• Technology maturity and cost
– FPGAs are viewed as co-processors
– Systems without a CPU are not even considered
– Systems with large number of FPGAs and small number of CPUs are not

considered either

National Center for Supercomputing Applications

Conclusions

• FPGAs have demonstrated substantial
performance improvements and power
efficiency for many applications

• However, their wide adoption in HPC is
hampered by the high cost, lack of
standards, difficulties in programming,
and poor portability of the codes

National Center for Supercomputing Applications

