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• Why quantum Monte Carlo?
• Various QMC methods
• The Endstation Project 
• Challenges at the petascale
• Some results in hydrogenic physics 
• General considerations -- the sign problem 
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“The general theory of quantum mechanics is now almost 
complete.  The underlying physical laws necessary for the 
mathematical theory of a large part of physics and the 
whole of chemistry are thus completely known, and the 
difficulty is only that the exact application of these laws 
leads to equations much too complicated to be soluble.”

Dirac,  1929

Maxwell, Boltzmann and Schrödinger gave us the model (at least 
for condensed matter physics.) Hopefully, all we must do is 
numerically solve the mathematical problem and determine the 
properties. (first principles or ab initio methods)  Without 
numerical calculations, the predictive power of quantum 
mechanics is limited.
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The curse of dimensionality: 
Direct quantum methods are slow!Direct quantum methods are slow!

Suppose we represent the complete N-body wavefunction and treat 
it as strictly a problem in linear algebra—find the exact solution.

If each dimension takes 100 complex numbers
Then N particles in 3 dimensions will take 106N  numbers..
Even with computer time and memory increasing exponentially, the

size of system we can treat will only grow linearly in time.

2 particle scattering was done on earliest computers ~1950
3 particle scattering  (Fadeev eq., coupled channels) after 1980’s.
4 particle scattering (generic 12 dimensional problem) is still very 

hard. 
Expect progress on 5 particle scattering in 2020.

There is no way out of this argument--except to change the problem. 
We don’t always need the wavefunction! Experimentalists can’t 
measure it!

For example, stochastic methods (simulations) don’t scale this way.
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Nature sets a very high standard for 
accuracy! 

1eV=11,600K    Room temperature = 0.025eV
Modeling of processes relevant to materials,chemistry, biology,…

needs to be accurate at the level of 0.01eV  ~ 0.4mH 

Current methods are inadequate

QMC typically accurate to 

0.1eV

Examples for small molecules: error in binding energy

O3,H2O2,C2,F2,Be2,…
Si2,P2,S2,Cl2
As2,Br2,Sb2
TiO, MnO
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Quantum Monte CarloMonte Carlo
• Premise: need to use simulation techniques to “solve” many-

body quantum problems just as you need them classically.
• Both the wavefunction and expectation values are determined 

by the simulations. Correlation built in from the start.
• QMC gives most accurate method for general quantum many-

body systems. 
• QMC electronic energy is a standard for approximate DFT 

calculations. (3rd largest citation in PRL.)
• provide a new understanding of quantum phenomena and a 

practical tool
• A continuum of stochastic methods:

– Variational Monte Carlo (VMC)
– Projector Monte Carlo methods for T=0: 

• Diffusion Monte Carlo (DMC) 
• Reptation MC (RQMC)
• Auxiliary field QMC (AFQMC)

– Path Integral Monte Carlo  for T>0 (PIMC)
– Coupled electron-ion Monte Carlo T>0  (CEIMC)

Goal is NOT large N, but higher accuracy and new capabilities
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Breakthrough Quantum Monte Carlo 
simulations:

• Hard-core bosons on a CDC 6600 (1974)
• Electron gas on CRAY-1 (1980)
• Superfluid helium   (1984)
• Ground state of solid hydrogen at high pressures, CRAY XMP and 

CYBER 205 (1987)
• Electronic and structure properties of carbon/silicon clusters on HP 

9000/715 cluster and Cray Y-MP (1995)
• Coupled Electron-Ion Monte Carlo simulations of dense hydrogen on 

Linux Clusters (2000s)
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Variational Monte Carlo (VMC)Variational Monte Carlo (VMC)
(McMillan 1965)(McMillan 1965)

• Put correlation directly into the 
wavefunction.

• Integrals are hard to do: need 
MC.

• Take sequence of increasingly 
better wavefunctions. 
Stochastic optimization is 
important! 

• Can we make arbitrarily 
accurate functions? Method 
of residuals says how to do this.

• Recent progress with 
“backflow”

• No sign problem, and with 
classical complexity.

• Posit a wavefunction φ(R,a)
• sample |φ(R,a)|2 with           

random walk.
• minimize energy or variance of 

φ(R,a) with respect to a
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MCC

One-body orbitals

• Fixed-node approximation in DMC/RMC uses the “nodes” of

• Elementary operation: random access to wf tables
• What method is used to obtain            matters for accuracy!
–Hartree-Fock? DFT? Hybrid ? or beyond HF/DFT
–How to represent             matters for efficiency!

- Plane-wave basis set
- Molecular orbitals in a localized atomic basis set: Gaussian- and 

Slater-type orbitals and numerical orbitals
- Real-space grid

–we have to calculate
- Can use any combination of mixed basis sets that are 

optimized for the performance and computing resources.
-This is the time consuming step today!
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MCC

Cost of Evaluations of Wave Function

• Molecular Orbitals 

• Plane-wave

• B-spline
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Projector Monte CarloProjector Monte Carlo
e.g. Diffusion Monte Carlo (DMC)

• Automatic way to get better wavefunctions.
• Project single state using the Hamiltonian

• This is a diffusion + branching operator.
• Very scalable: each walker gets a processor.
• But is this a probability?  
• Yes! for bosons since ground state can be made real 

and non-negative. But all excited states must have sign 
changes.

• In exact methods one carries along the sign as a weight 
and samples the modulus.  This leads to the famous 
sign problem
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MCC

DMC algorithm
Evolution of walker in Evolution of walker in 
one step one step (seconds)

Branching and death 
process for walkers

Population control

Load balancing
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MCC

QMCPACK
• Open-source library and application package to perform Quantum 

Monte Carlo (QMC) Simulations
• Implements various QMC algorithms: VMC, DMC, RQMC
–Generic representations of the physical entities and models
–Object-oriented implementation of QMC algorithms  (C++)
–Generic programing of computational Kernels

• Designed for large-scale QMC simulations of molecules, solids 
and nanostructures: OpenMP/MPI Hybrid parallelization, effective
for multi-core systems

• Standard open-source libraries and utilities for development, 
compilation and executions

• Adopts XML/HDF5 for I/O
• Developed at MCC and NCSA http://ww.mcc.uiuc.edu/qmc/

Principal author: Jeongnim Kim  UIUC
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DMC scales well

Current work: extend production codes  to > 30,000 nodes
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What happens when we scale up?
Say by a factor of 100

• Can one distribute more walkers across nodes?
– Will reduce statistical error by factor of 10
– But wall clock time will be the same
– Systematic errors will be the same
– Load balancing/fault tolerance problems
– For most problems, we will not achieve the science 

goals
Need to find more parallelism to keep errors the same 
but reduce wall clock time and reduce systematic errors

• Vulnerable to software and hardware errors?
• Are existing pseudo-random number generators 

adequate at the petascale? Tested SPRNG for 28K 
random number streams with 1010 numbers/stream.
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MCC

DMC algorithm and OpenMP/MPI 
parallelization

• Memory limitations of the current MPI parallelization
• Will total memory per SMP node will grow with more cores: 8-64 GB will 

be sufficient for many problems.
• One or more walker {R} per core (OpenMP thread)
• Read-only large-scale data (e.g., wavefunctions) are shared but others 

objects are allocated per thread.



ENDSTATION Project           FallCreek2008 18

Load Balancing for QMC

• Multi-level scheme of managers, sub-managers, 
workers.

• Walker point of view:
– After a walker completes an elementary step, it 

sends averages, and branching information up the 
tree 

– Looks for new configurations to send or receive.
• Manager 

– Decides on load balancing and sends transfer 
information down the tree 

– Provides overall stability of population, checkpointing
and I/O of averages

– When processors die, those branches are pruned 
• Eliminate need for synchronization, blocking calls,…
• Can run in an unstable environment
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MD and MC Simulations

• Initial simulations used semi-empirical potentials.
• Much progress with “ab initio” molecular dynamics simulations 

where the effects of electrons are solved for each step.
• However, the potential surface as determined by density 

functional theory is not always accurate enough
• QMC+MD =CEIMC  is a candidate for petascale “killer app”

–Hard sphere MD/MC   ~1953  (Metropolis, Alder)

–Empirical potentials (e.g. Lennard-Jones)  ~1960  
(Verlet, Rahman)

–Local density functional theory ~1985 (Car-Parrinello)

–Quantum Monte Carlo  (CEIMC) ~2000
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Coupled Electron-Ionic Monte Carlo:CEIMC 

1. Do Path Integrals for the ions at T>0.

2. Let electrons be at zero temperature, a reasonable 
approximation for room temperature simulations.

3. Use Metropolis MC to accept/reject moves based on 
QMC computation of electronic energy

.
electrons

ions

R

S ⇒ S*

The “noise” coming from electronic energy can be treated 
without approximation: the penalty method.
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A feature of Monte Carlo?
averages are almost free.

Suppose we have an extra parameter “q” to sum over.

• In a deterministic calculation, this will multiply CPU time by M.
• This extra parameter will not slow down the calculation by 

Monte Carlo: it is just one more variable to average over.
• We start up M calculations on M separate processors for 

different values of q: they all serve to reduce the error bar.
• The only slow down occurs comes from “start up” costs: e. g. 

Metropolis warm-up or initializations.
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Twist averaged boundary conditions
• In periodic boundary conditions, the wavefunction

is periodic⇒Large finite size effects for metals 
because of fermi surface.

• In twist averaged BC, we use an arbitrary phase θ
as r →r+L

• Integrate over all phases, i.e. Brillouin zone 
integration.

• Momentum distribution changes from a lattice  of 
k-vectors to a fermi sea.

• Eliminates single-particle finite-size effects.
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• Make a move of the protonic
paths

• Partition the 4D lattice of 
boundary conditions (θx θy θz)
and imaginary time (τ) in such 
a way that each variable is 
uniformly sampled (stratified)

• Send them all out to M 
separate processes 

• Do DMC to get energy 
differences and variances

• Combine to get global 
difference and variance. 
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QMC methods for Hydrogen

Path Integral MC for 
T > EF/10

Diffusion MC T=0

Coupled-electron Ion 
MC

Path Integral MC with 
an effective potential
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Experiment vs PIMC/DFT simulations

• Older laser 
(NOVA) shocks 
are incompatible 
with microscopic 
theory.

• Chemical models 
are not predictive 
in this regime.

• Z-pinch 
experiments of 
Knudsen et al., 
PRL 87, 225501 
(2001)

• QMC predicted 
results that were 
later vindicated!

3eV

1.5eV

1.0eV

0.7eV

T
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Plasma Phase Transition

• Study nature of transition from molecular to non-molecular 
fluid using CEIMC

• Simulations at T=2000K with P=50-200GPa
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Atomic-Molecular Transition

( ) ( ) ( )rgrgrg nonmolmol λλ −+= 1)(

•VMC: Hysteresis; probably 1st

order transition.

•RQMC: No hysteresis; 
continuous transition.

•VMC trial function has difficulty 
with the mixed H2-H state.

H2 order parameter

Np=Ne=54
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General statement of the General statement of the 
““fermion problemfermion problem””

• Given a system with N fermions and a known Hamiltonian and a 
property O  (usually the energy):
– How much time T will it take to estimate O to an accuracy ε? 
– How does T scale with N and ε?

• If you can map the quantum system onto an equivalent problem 
in classical statistical mechanics then:

2NT −∝ εα With 0 <α < 3 
This would be a “solved” quantum problem!
•All approximations must be controlled! 
•Algebraic scaling in N!
e.g.  properties of Boltzmann or Bose systems in equilibrium.

Which problems can be done with the direct fermion
methods at the petascale?  e.g. the 3DEG (1980)
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SUMMARY
• No existing methods are perfect but QMC today is competitive 

with other methods and usually much more accurate.
• Progress in ab initio simulations in last 40 years,  coming from 

both
– Computer power
– Algorithmic power

• We are now in position to do much more accurate simulations
• Our petascale goal: water and transition metal oxides (e.g. 

MnO), …
• Ab initio computation of electronic system is a great problem 

to solve. Intellectually and technologically very important. 
More work needed in algorithms to get higher accuracy, treat 
larger systems, heavier elements allowing:
– benchmarking to validate cheaper approaches
– replace more approximate approaches.
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