Mining Data Streams
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With advances in technology, various data sources

(e.g. sensors, GPS units) can continue to generate
data at high rate

Simple everyday activities/transactions such as
using the credit card or the phone are recorded in
an automated way

Either by machines or human beings, various data
streams are generated at high rate



Trade surveillance for security fraud and money
laundering

Bio-surveillance for terrorist attacks

Sensor network for monitoring intelligent oil wells,
manufacturing plants, RFID products, etc

Network monitoring for intrusion detection
Emergency room patient monitoring
Web related applications

Click stream mining for real-time personalized
recommendations

Text stream mining for topic detection
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Disaster Assistance Claim Monitoring System
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Disaster Assistance Claim Monitoring System
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Stream Classification
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Stream Classification
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High Dimensional Classification
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Locality based Classifiers
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Observations
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Key Solutions
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Construct an intermediate data structure on the
training data
OLAP type approach

Data structure should be flexible enough to
dynamically construct local subspaces for each test
instance efficiently

Use multiple local subspace samples in order to
perform the classification

Robustness of classification depends on number of samples
(adjustable)



The intermediate data structure used is an inverted
histogram representation

Construct a histogram along each dimension using
®- equi-depth ranges
Creates @ inverted list along each dimension



Subspace Selection

Dimension 1

Dimension 2

Dimension 3

Dimension 4




» A sample of y-inverted lists along the different
dimensions creates a subspace of dimensionality of y

» Majority of subspace samples provides classification

 Use class variable in the sampling process

Maintain the class entropy of each inverted list and sample as
a function of the class entropy

Greater bias — faster convergence, but local optima



Regulation of Processing Speed
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Adjustments with Input Streams

Target Queue Wait=10 sec.

— — — — Target Queue Wait=100 sec.
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Adjustments with Input Streams
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Accuracy
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Method for high dimensional classification of
streams

Adaptive method which can adjust with the speed of
the stream

Provides robust classification
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