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Agenda 

  The Accelerator Challenge 
  Directives for Accelerators? 
  A Few Examples 
  Possible Directions  



That was then: Multicore  

  Small number of cores, shared memory 
  Each core: single thread or multithreaded, complex or simplified 
  Resources (L2 cache, memory bandwidth): shared or separated 
  System built from homogeneous or heterogeneous cores 

IBM Power4, 2001 
Sun T-1 (Niagara), 2005 

Intel rocks the boat 2005 
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ClearSpeed Accelerator: CSX600 
designed for HPC •  Processor Core: 

–  40.32 64-bit GFLOPS 
–  10W typical 
–  210MHz 
–  96 PEs, 6 Kbytes each 
–  8 redundant PEs 

•  SoC details: 
–  integrated DDR2 memory 

controller with ECC support 
–  128 Kbytes of SRAM 

•  Design details: 
–  IBM 130nm process 
–  128 million transistors (47% 

logic, 68% memory) 

•  Sampled Q3 2005 



This is Now: Accelerators Galore 
•  Today’s accelerators : 

–  Mostly Nvidia GPGPUs 
–  Program via CUDA 

•    Two levels of parallelism: 
–  DOALL (fully parallel, outer 

loops) 
–  Synchronous (SIMD or vector, 

inner loops) 
–  No SIMD/Vector operations 

–  Operate on rectangular domains 
of 2 or 3 dimensions  

•     No DOALL synchronization  
–  synchronizations at inner level 
–  Weak consistency model, i.e 

memory flushes after barriers 



The Execution Model 
  Host-accelerator device model 

  Accelerator memory limited, distinct 
from host memory 

  No virtual address mapping 
between them 

  Host offloads accelerator 
regions 

  Host handles: 
  Memory allocation on device 
  Initiate data transfer 
  Sending kernel code to device 
  Waiting for completion 
  Transfer results back from device 
  Queuing kernels for execution 



GPGPU Programming Challenges 

  Low-level APIs 
  Requires  major code change 

  Many limitations on kind of code that can be executed 
  Branching leads to high inefficiencies 
  CPU (cache) optimizations generally not useful, not good starting 

point for accelerator code 
  Large design space for accelerator kernels  

  Need to carefully consider memory and register usage 
  Number of threads per block 
  Loop optimizations 
  Data prefetching, offloading 

  Small differences in code can lead to large differences in 
performance 



Heterogeneous Cores: A High-Level 
Programming Model?  
  Heterogeneous (accelerator) programming is currently very low-

level 
  Number of questions to be resolved if we are to provide one 

programming model across gen.-purpose CPUs and accelerators 

  How to identify code that should 
be accelerated? 

  How to move data between host 
cores and other devices? 

  What is role of user?  



Can We Standardize? 

  There is not just one kind of accelerator 
  GPGPU, FPGA, DSP, ARM, Cell, Vector 
  Different range of instructions 

  Programming model for accelerators must suit variety of 
architectures and applications 
  What kind of code will run on accelerator? Arbitrary 

sequential regions, loops, parallel code? 
  How do we optimize for memory use? 

  What kinds of applications need to be supported? 
  “Streams” programming? 
  Embedded applications? 

MCA develops low-level interfaces to 
“glue” heterogeneous components  



The OpenMP ARB 

  OpenMP is maintained by the OpenMP Architecture 
Review Board (the ARB), which 

  Interprets OpenMP 
  Writes new specifications - keeps OpenMP relevant 
  Works to increase the impact of OpenMP 

  Members are organizations - not individuals 
  Current members 

  Permanent: AMD, Caps Entreprise, Cray, Fujitsu, HP, IBM, Intel, 
Microsoft, NEC, PGI, SGI,  Sun, Texas Instruments 

  Auxiliary: ASCI, cOMPunity, EPCC, KSL, NASA, RWTH Aachen 

 www.compunity.org 



Existing OpenMP-like approaches 

  PGI  
  Define a region of code running on accelerators 

  CAPS 
  Define codelet running on accelerators and data 

transfer 
   Acotes Project (Barcelona, INRIA,..) 

  Define tasks on accelerators 
  IBM 

  Overload OpenMP directives, avoid extensions 



What kind of code region can be 
mapped to accelerator?  

  OpenMP parallel region 
  Worksharing construct 
  Tasks 
  Arbitrary well-structured region 
  All of the above? 



CAPS: Hybrid Application View 
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CAPS HMPP Approach 

•  Preserve application code legacy 
•  Integrate HWAs in applications with minimal disruption 

•  Provide HWA interoperability 

•  Mix HMPP and OpenMP to exploit HWAs and general 
purpose cores 
•  Use best parallel version according to execution context 

•  OpenMP directives in codelets 
•  Codelet will instantiate threads 

•  OpenMP directives outside codelets 
•  One codelet per OpenMP thread using HWA 



Existing Approaches: CAPS HMPP 

  Declare hardware specific 
implementations of functions 
(HMPP codelets) 
  Can be specialized to the 

execution context (data size, 
…) 

  Codelet calls (RPC) 
  Synchronous, asynchronous 

properties 

  Data transfers 
  Data prefetching 

  Synchronization barriers 
  Host CPU will wait until remote 

computation is complete 
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CAPS: Multiple Devices  

  Use #D accelerators in parallel 
#pragma omp parallel for, private (j)  
  for (jj=0;jj<#D;jj++){ 
    for (j=jj*(n/#D); j<jj*(n/#D)+(n/#D); j++){ 
#pragma hmpp tospeedup1 callsite 
      simplefunc1(n,t1[j],t2,t3[j],alpha); 
    } 
#pragma hmpp tospeedup1 release 
  } 



Existing Accelerator Approaches: PGI 
  Compiler directives for to accelerate regions of 

C/Fortran code. 
  OpenMP-like 
  Incremental development 

  Features: 
  Initializes accelerator 
  Manages data and program transfers between host 

and accelerator 
  Directives are hints, not commands 
  User guidance: data scoping, mapping of loops, 

performance details. 



PGI Directives 

  C: 
   #pragma acc  region [clause [,clause]…] new-line 

  Fortran: 
!$acc region [clause [, clause]…] 

  Loops within the structured block will be compiled 
into accelerator kernels if possible. This might 
require moving data in/out of the device. 



Clauses 

  !$acc region [clause [, clause]…] 

  if (condition) 
  copy (variable list) 

  copy in from host to accelerator 

  copyin(variable list)  
  copy in from host to accelerator 

  copyout(variable list) 
  copy out from accelerator to host 

  local(variable list) 
  Local variable in accelerator 



Clauses 

  !$acc do [clause [, clause]…] 
  host [(width)] 
  parallel [(width)] 
  seq [(width)]  
  vector [(width)] 
  unroll (width) 
  kernel 
  shortloop 
  private ( variable list ) 
  cache ( variable list ) 



Example 
double precision A(rowa,cola), B(cola,colb), C(rowa,colb) 
!$acc region 
!$acc& copy(c(1:rowa,1:colb)), copyin(b(1:cola 1:colb),a(1:rowa,1:cola))      
do j=1,colc                                      
        do  i=1,rowc 
          sum = 0.0d00 
          do  k=1,cola 
            sum = sum + a(i,k) * b(k,j) 
          enddo 
          c(i,j) = c(i,j) + sum 
      enddo 
   endo 
!$acc end region 

Data that should be allocated and 
offloaded to accelerator: 

  Generating copy(c(1:rowa,1:colb)) 
  Generating copyin(b(1:cola,1:colb)) 
  Generating copyin(a(1:rowa,1:cola)) 

Compiler might generate 
this automatically 



Comments 
  Kernels generated from loop nest in accelerated 

region 
  Compiler must prove loops are independent! 

  Compiler will attempt to find two levels of parallelism 
  Across Multiprocessors   (parallel) 
  Within Processor/Warps  (vector) 

  Compiler will attempt to find a good schedule 
  Vector lengths scheduled to warps 
  Strip-mine loops to achieve desired schedule 
  Define parallel loops distributed across processors 
  Determine Grid and Block sizes in GPU  

  Block size fixed by compiler, grid size will dependent on the 
size of the data passed to GPU 



Output from compiler: 
   39, Generating copy(c(1:rowa,1:colb)) 
         Generating copyin(b(1:cola,1:colb)) 
         Generating copyin(a(1:rowa,1:cola)) 
     40, Loop is parallelizable 
     41, Loop is parallelizable 
         Accelerator kernel generated 
         40, !$acc do parallel, vector(16) 
         41, !$acc do parallel, vector(16) 
     43, Scalar last value needed after loop for sum 
         Loop carried scalar dependence for sum 
         Inner sequential loop scheduled on accelerator 
     44, Accelerator restriction: scalar variable live-out from loop: sum 

Compiler generates 
Block size: 16x16 



Choices: The Productive Approach 

High-level approach 
  Less code modification, potentially portable 
  Directives are easiest to fit in with status quo: Prescriptive or hints? 
  Some amount of adaptivity to given configuration and workload: 

code should still run even if accelerator is not available 
  Data management is crucial. Persistent data, timing of allocation, 

de-allocation and transfer 

Implementation 
  Does the user prescribe or influence some of major decisions? 

  Number of threads in block? Loop optimizations? 
  Data movement? 

  Tools for experimenting with different alternatives? 

A number of companies are exploring this intensively 



Performance 
 High-performance Superscalar ARM® Cortex™-A8 featuring NEON               

co-processor with immersive 2D/3D Graphics accelerator 
 HD video decode utilizing TMS320C64x+ DSP and video hardware 

accelerators 
  Low power utilizing TI’s SmartReflex™ technology with option for integrated 

and discrete Power Management ICs 
Features 
   Cores 

  Cortex A-8 with NEON™ SIMD Coprocessor / DSP-based TMS320C64x
+ DSP and video accelerators (max performance only) 
  600 MHz / 430 MHz @ 1.35V (operating limits apply) 
  550 MHz / 400 MHz @ 1.27V 

  2D/3D Graphics Engine - Up to 10M polygons per second 
   Memory 

  ARM: 
  16 kB I-Cache; 16 kB D-Cache; 256kB L2 

  TMS320C64x+ DSP and video accelerators 
  L1 32kB Program Cache/32kB Data Cache + 48kB SRAM 
  L2 64kB Program / Data Cache + 32 kB SRAM; 16 kB ROM 

  On Chip: 64kB SRAM; 112kB ROM 
  Peripheral Highlights 

  Support for LPDDR1 
  Support for NOR, NAND, SRAM, Pseudo SRAM 
  USB 2.0 HS Compliant OTG Controller w/ 2 additional USB Host 

Controllers  
  Display subsystem with LCD and TV interface.  Supports PIP, color space 

conversion, resize and rotation. 
  Camera I/F with CCD controller and Image-pipe (Preview, Resize, 

Statistics 
 Package 1 (CBB): 12x12 mm, 0.4mm pitch, Package On Package (POP); 515 

pin PBGA; production now; can be used with discrete memory 
 Package 2 (CUS): 16x16 mm 0.65 mm pitch. 423 pin PBGA; production now. 

Utilizes Via Channel™ Array Technology with 0.8mm pitch plus design rules. 
 Package 3 (CBC): 14x14 mm, 0.5 mm pitch POP; 515 pin PBGA; production 

now; must use POP memory 
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Cortex™-

A8 
CPU 

L3/L4 Interconnect 

C64x+™ DSP and  
video 

accelerators 
(3525/3530 only) 

Peripherals 

Program/Data Storage 

System 

I2C 
x3 

Serial Interfaces 

Display 
Subsystem 

Connectivity 

MMC/ 
SD/ 

SDIO 
x3 

USB 
Host 

Controller x3 

USB 2.0 HS 
OTG 

Controller 

GPMC 

SDRC UART 
x2 

UART 
w/IRDA 

McBSP 
x5 

McSPI 
x4 

Timers 
GP x12 
WDT x2 

Image 
Pipe 

Parallel I/F 

Camera I/F POWERVR 
SGX™ Graphics 
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Applications include: 
  Automotive Infotainment 

  In-dash navigation 
  Consumer 

  PND 
  PMP 
  Digital Video Camera 

   Medical 
  Patient monitoring 
  Portable ultrasound 

   Industrial 
  Point of sale 
  Smart white goods 

10 bit DAC Video 
Enc 10 bit DAC 

LCD 
Cont- 
roller 

OMAP35x processor:  Laptop like performance at handheld power level 

Note: Peripheral limitations may apply among different packages 

POWERVR SGX™ 3D engine is licensed from Imagination Tech. Ltd. 



Questions?  



Evaluation of the 
PGI Fortran & C Accelerator 
Programming Model 



Evaluation 
  Experiments were done with 1 process and accelerator 

(Tesla C1060) per node. 
  Application Bugget: Fox and Leyman parallel matrix 

algorithms with different algorithms and matrix sizes per 
node. 

  Compiler: PGI 9.0.3 
  Machine: lens.ccs.ornl.gov 

  32 node cluster 
  Nodes with 4 sockets, 64GB memory 

  quad-core AMD Opteron 8356 
  Accelerators: 

  Tesla C1060, 4GB memory, 30 multi-processors, 240 cores 
    32 warp size, Capability 1.3 
  GeForce 8800 GTX, 800MB memory, 16 multi-processors, 128 cores 
    32 warp size, Capability 1.0  
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Observations 
  Two levels of parallelism generated 

  Grid size 63x63, Block size 16x16 

  Host version of Matrix-Multiplication not optimized 
  O(n2) data transfer vs. O(n3) computations 

  Transfer time vs. Kernel Computation time. 
  Average of 19% of total GPU kernel time is transferring data. 

  GPU version of matrix multiplication highly parallel 
  ~98x improvement 

  The matrix algorithm is not optimized for the Host 
version. (No blocking/tiling, etc) 



Different Sizes of Matrix Multiplication 
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Observations 
  As problem size increases, host-version of matrix 

multiplication suffers from cache size and memory 
bandwidth. 
  True even for blocked/tiled best version (see later). 

  Improvement ratio increases from 98x to 200x as 
problem size increases 

  Data transfer time becomes less relevant for bigger 
problem sizes. 
  96% is spent computing the kernel in GPU for 4000x4000 
  4% in data transfer from host to GPU. 

  Small kernel sizes suffer from one time overhead 
initialization.    



 do 00100 ib = 1,nbi 
        ilo = (ib-1)*bsi + 1 
        ihi = min((ilo+bsi-1),rowc) 
        do 00200 jb = 1,nbj 
          jlo = (jb-1) * bsj + 1 
          jhi = min((jlo+bsj-1),colc) 
          do 00300 kb = 1,nbk 
            klo = (kb-1) * bsk + 1 
            khi = min((klo+bsk-1),cola) 
!$acc region 
            do 00400 j = jlo,jhi 
              do 00500 k = klo,khi 
                myconstant = b(k,j) 
                do 00600 i = ilo,ihi 
                  c(i,j) = c(i,j) + a(i,k)*myconstant 
00600           continue 
00500         continue 
00400       continue 
!$acc end region 



Another idea: “Places” 

  Define a place that code and data can be 
associated with 

  A place can then be associated with an 
accelerator 

  Complete data environment in the place 
  Define data communication via streams/pipes 
  Flexibility in combination with the current 

OpenMP programming model 



Place and Data 

  -Define the number of places and 
associate with hardware attribute 
  omp_place_t p[N] // for static declaration 
  P[N-1] = omp_GPU  // the last place is GPU 

  #pragma omp place(p[N-1]) 
  shared – data shared among all places 
  shared_on_place(variables) – data shared on 

the current place 
  Private – data private to each task/thread 


