
Toward Simplifying Application
Development on Heterogeneous
Multicore Platforms

Barbara Chapman
University of Houston

Chattanooga, September 24, 2009

Agenda

  The Accelerator Challenge
  Directives for Accelerators?
  A Few Examples
  Possible Directions

That was then: Multicore

  Small number of cores, shared memory
  Each core: single thread or multithreaded, complex or simplified
  Resources (L2 cache, memory bandwidth): shared or separated
  System built from homogeneous or heterogeneous cores

IBM Power4, 2001
Sun T-1 (Niagara), 2005

Intel rocks the boat 2005

Copyright © 2007-8 ClearSpeed
Technology plc. All rights
reserved.

ClearSpeed Accelerator: CSX600
designed for HPC •  Processor Core:

–  40.32 64-bit GFLOPS
–  10W typical
–  210MHz
–  96 PEs, 6 Kbytes each
–  8 redundant PEs

•  SoC details:
–  integrated DDR2 memory

controller with ECC support
–  128 Kbytes of SRAM

•  Design details:
–  IBM 130nm process
–  128 million transistors (47%

logic, 68% memory)

•  Sampled Q3 2005

This is Now: Accelerators Galore
•  Today’s accelerators :

–  Mostly Nvidia GPGPUs
–  Program via CUDA

•  Two levels of parallelism:
–  DOALL (fully parallel, outer

loops)
–  Synchronous (SIMD or vector,

inner loops)
–  No SIMD/Vector operations

–  Operate on rectangular domains
of 2 or 3 dimensions

•  No DOALL synchronization
–  synchronizations at inner level
–  Weak consistency model, i.e

memory flushes after barriers

The Execution Model
  Host-accelerator device model

  Accelerator memory limited, distinct
from host memory

  No virtual address mapping
between them

  Host offloads accelerator
regions

  Host handles:
  Memory allocation on device
  Initiate data transfer
  Sending kernel code to device
  Waiting for completion
  Transfer results back from device
  Queuing kernels for execution

GPGPU Programming Challenges

  Low-level APIs
  Requires major code change

  Many limitations on kind of code that can be executed
  Branching leads to high inefficiencies
  CPU (cache) optimizations generally not useful, not good starting

point for accelerator code
  Large design space for accelerator kernels

  Need to carefully consider memory and register usage
  Number of threads per block
  Loop optimizations
  Data prefetching, offloading

  Small differences in code can lead to large differences in
performance

Heterogeneous Cores: A High-Level
Programming Model?
  Heterogeneous (accelerator) programming is currently very low-

level
  Number of questions to be resolved if we are to provide one

programming model across gen.-purpose CPUs and accelerators

  How to identify code that should
be accelerated?

  How to move data between host
cores and other devices?

  What is role of user?

Can We Standardize?

  There is not just one kind of accelerator
  GPGPU, FPGA, DSP, ARM, Cell, Vector
  Different range of instructions

  Programming model for accelerators must suit variety of
architectures and applications
  What kind of code will run on accelerator? Arbitrary

sequential regions, loops, parallel code?
  How do we optimize for memory use?

  What kinds of applications need to be supported?
  “Streams” programming?
  Embedded applications?

MCA develops low-level interfaces to
“glue” heterogeneous components

The OpenMP ARB

  OpenMP is maintained by the OpenMP Architecture
Review Board (the ARB), which

  Interprets OpenMP
  Writes new specifications - keeps OpenMP relevant
  Works to increase the impact of OpenMP

  Members are organizations - not individuals
  Current members

  Permanent: AMD, Caps Entreprise, Cray, Fujitsu, HP, IBM, Intel,
Microsoft, NEC, PGI, SGI, Sun, Texas Instruments

  Auxiliary: ASCI, cOMPunity, EPCC, KSL, NASA, RWTH Aachen

 www.compunity.org

Existing OpenMP-like approaches

  PGI
  Define a region of code running on accelerators

  CAPS
  Define codelet running on accelerators and data

transfer
  Acotes Project (Barcelona, INRIA,..)

  Define tasks on accelerators
  IBM

  Overload OpenMP directives, avoid extensions

What kind of code region can be
mapped to accelerator?

  OpenMP parallel region
  Worksharing construct
  Tasks
  Arbitrary well-structured region
  All of the above?

CAPS: Hybrid Application View

4

3A

3B

2A

2B

2C

1

Parallel and distributed
execution

Sequential
execution

1

2A 2B 2C

3A 3B

4

Ex
ec

ut
io

n
ti

m
e

Application

Application

Hybrid Processor System

generic
core

generic
core

stream
core

stream
core

Control and data
transfers

Execution tim
e

CAPS HMPP Approach

•  Preserve application code legacy
•  Integrate HWAs in applications with minimal disruption

•  Provide HWA interoperability

•  Mix HMPP and OpenMP to exploit HWAs and general
purpose cores
•  Use best parallel version according to execution context

•  OpenMP directives in codelets
•  Codelet will instantiate threads

•  OpenMP directives outside codelets
•  One codelet per OpenMP thread using HWA

Existing Approaches: CAPS HMPP

  Declare hardware specific
implementations of functions
(HMPP codelets)
  Can be specialized to the

execution context (data size,
…)

  Codelet calls (RPC)
  Synchronous, asynchronous

properties

  Data transfers
  Data prefetching

  Synchronization barriers
  Host CPU will wait until remote

computation is complete

Main
Memory

Application
data

General
Purpose

Processor
Cores

HWA

Application
data

Stream cores

Upload
remote
data

Download
remote data

Remote
Procedure call

CPU

CAPS: Multiple Devices

  Use #D accelerators in parallel
#pragma omp parallel for, private (j)
 for (jj=0;jj<#D;jj++){
 for (j=jj*(n/#D); j<jj*(n/#D)+(n/#D); j++){
#pragma hmpp tospeedup1 callsite
 simplefunc1(n,t1[j],t2,t3[j],alpha);
 }
#pragma hmpp tospeedup1 release
 }

Existing Accelerator Approaches: PGI
  Compiler directives for to accelerate regions of

C/Fortran code.
  OpenMP-like
  Incremental development

  Features:
  Initializes accelerator
  Manages data and program transfers between host

and accelerator
  Directives are hints, not commands
  User guidance: data scoping, mapping of loops,

performance details.

PGI Directives

  C:
 #pragma acc region [clause [,clause]…] new-line

  Fortran:
!$acc region [clause [, clause]…]

  Loops within the structured block will be compiled
into accelerator kernels if possible. This might
require moving data in/out of the device.

Clauses

  !$acc region [clause [, clause]…]

  if (condition)
  copy (variable list)

  copy in from host to accelerator

  copyin(variable list)
  copy in from host to accelerator

  copyout(variable list)
  copy out from accelerator to host

  local(variable list)
  Local variable in accelerator

Clauses

  !$acc do [clause [, clause]…]
  host [(width)]
  parallel [(width)]
  seq [(width)]
  vector [(width)]
  unroll (width)
  kernel
  shortloop
  private (variable list)
  cache (variable list)

Example
double precision A(rowa,cola), B(cola,colb), C(rowa,colb)
!$acc region
!$acc& copy(c(1:rowa,1:colb)), copyin(b(1:cola 1:colb),a(1:rowa,1:cola))
do j=1,colc
 do i=1,rowc
 sum = 0.0d00
 do k=1,cola
 sum = sum + a(i,k) * b(k,j)
 enddo
 c(i,j) = c(i,j) + sum
 enddo
 endo
!$acc end region

Data that should be allocated and
offloaded to accelerator:

 Generating copy(c(1:rowa,1:colb))
 Generating copyin(b(1:cola,1:colb))
 Generating copyin(a(1:rowa,1:cola))

Compiler might generate
this automatically

Comments
  Kernels generated from loop nest in accelerated

region
  Compiler must prove loops are independent!

  Compiler will attempt to find two levels of parallelism
  Across Multiprocessors (parallel)
  Within Processor/Warps (vector)

  Compiler will attempt to find a good schedule
  Vector lengths scheduled to warps
  Strip-mine loops to achieve desired schedule
  Define parallel loops distributed across processors
  Determine Grid and Block sizes in GPU

  Block size fixed by compiler, grid size will dependent on the
size of the data passed to GPU

Output from compiler:
 39, Generating copy(c(1:rowa,1:colb))
 Generating copyin(b(1:cola,1:colb))
 Generating copyin(a(1:rowa,1:cola))
 40, Loop is parallelizable
 41, Loop is parallelizable
 Accelerator kernel generated
 40, !$acc do parallel, vector(16)
 41, !$acc do parallel, vector(16)
 43, Scalar last value needed after loop for sum
 Loop carried scalar dependence for sum
 Inner sequential loop scheduled on accelerator
 44, Accelerator restriction: scalar variable live-out from loop: sum

Compiler generates
Block size: 16x16

Choices: The Productive Approach

High-level approach
  Less code modification, potentially portable
  Directives are easiest to fit in with status quo: Prescriptive or hints?
  Some amount of adaptivity to given configuration and workload:

code should still run even if accelerator is not available
  Data management is crucial. Persistent data, timing of allocation,

de-allocation and transfer

Implementation
  Does the user prescribe or influence some of major decisions?

  Number of threads in block? Loop optimizations?
  Data movement?

  Tools for experimenting with different alternatives?

A number of companies are exploring this intensively

Performance
 High-performance Superscalar ARM® Cortex™-A8 featuring NEON

co-processor with immersive 2D/3D Graphics accelerator
 HD video decode utilizing TMS320C64x+ DSP and video hardware

accelerators
  Low power utilizing TI’s SmartReflex™ technology with option for integrated

and discrete Power Management ICs
Features
  Cores

  Cortex A-8 with NEON™ SIMD Coprocessor / DSP-based TMS320C64x
+ DSP and video accelerators (max performance only)
  600 MHz / 430 MHz @ 1.35V (operating limits apply)
  550 MHz / 400 MHz @ 1.27V

  2D/3D Graphics Engine - Up to 10M polygons per second
  Memory

  ARM:
  16 kB I-Cache; 16 kB D-Cache; 256kB L2

  TMS320C64x+ DSP and video accelerators
  L1 32kB Program Cache/32kB Data Cache + 48kB SRAM
  L2 64kB Program / Data Cache + 32 kB SRAM; 16 kB ROM

  On Chip: 64kB SRAM; 112kB ROM
  Peripheral Highlights

  Support for LPDDR1
  Support for NOR, NAND, SRAM, Pseudo SRAM
  USB 2.0 HS Compliant OTG Controller w/ 2 additional USB Host

Controllers
  Display subsystem with LCD and TV interface. Supports PIP, color space

conversion, resize and rotation.
  Camera I/F with CCD controller and Image-pipe (Preview, Resize,

Statistics
 Package 1 (CBB): 12x12 mm, 0.4mm pitch, Package On Package (POP); 515

pin PBGA; production now; can be used with discrete memory
 Package 2 (CUS): 16x16 mm 0.65 mm pitch. 423 pin PBGA; production now.

Utilizes Via Channel™ Array Technology with 0.8mm pitch plus design rules.
 Package 3 (CBC): 14x14 mm, 0.5 mm pitch POP; 515 pin PBGA; production

now; must use POP memory

ARM®
Cortex™-

A8
CPU

L3/L4 Interconnect

C64x+™ DSP and
video

accelerators
(3525/3530 only)

Peripherals

Program/Data Storage

System

I2C
x3

Serial Interfaces

Display
Subsystem

Connectivity

MMC/
SD/

SDIO
x3

USB
Host

Controller x3

USB 2.0 HS
OTG

Controller

GPMC

SDRC UART
x2

UART
w/IRDA

McBSP
x5

McSPI
x4

Timers
GP x12
WDT x2

Image
Pipe

Parallel I/F

Camera I/F POWERVR
SGX™ Graphics
(3515/3530 only)

HDQ /
1-wire

OMAP35x Processor

Applications include:
  Automotive Infotainment

  In-dash navigation
  Consumer

  PND
  PMP
  Digital Video Camera

  Medical
  Patient monitoring
  Portable ultrasound

  Industrial
  Point of sale
  Smart white goods

10 bit DAC Video
Enc 10 bit DAC

LCD
Cont-
roller

OMAP35x processor: Laptop like performance at handheld power level

Note: Peripheral limitations may apply among different packages

POWERVR SGX™ 3D engine is licensed from Imagination Tech. Ltd.

Questions?

Evaluation of the
PGI Fortran & C Accelerator
Programming Model

Evaluation
  Experiments were done with 1 process and accelerator

(Tesla C1060) per node.
  Application Bugget: Fox and Leyman parallel matrix

algorithms with different algorithms and matrix sizes per
node.

  Compiler: PGI 9.0.3
  Machine: lens.ccs.ornl.gov

  32 node cluster
  Nodes with 4 sockets, 64GB memory

  quad-core AMD Opteron 8356
  Accelerators:

  Tesla C1060, 4GB memory, 30 multi-processors, 240 cores
 32 warp size, Capability 1.3
  GeForce 8800 GTX, 800MB memory, 16 multi-processors, 128 cores
 32 warp size, Capability 1.0

Matrix size 1000x1000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

1

2

4

8

16

Microseconds

of

 P
ro

ce
ss

or
s

GPU Kernel Time (Grid: 63x63, Block: 16x16)

Data Transfer Time

Kernel Computation Time

Initialization

Total Kernel Time

96

97

98

99

100

101

102

1 2 4 8 16

Im
pr

ov
em

en
t

Fa
ct

or
 (x

)

of Processors

 Ratio Host Only vs. GPU
Kernel Time

0
2
4
6
8

10
12
14
16
18
20

1 2 4 8 16

Se
co

nd
s

of processors

Matrix Multiplication Kernel Time

PGI-Host

PGI-Accelerator

Observations
  Two levels of parallelism generated

  Grid size 63x63, Block size 16x16

  Host version of Matrix-Multiplication not optimized
  O(n2) data transfer vs. O(n3) computations

  Transfer time vs. Kernel Computation time.
  Average of 19% of total GPU kernel time is transferring data.

  GPU version of matrix multiplication highly parallel
  ~98x improvement

  The matrix algorithm is not optimized for the Host
version. (No blocking/tiling, etc)

Different Sizes of Matrix Multiplication

0

200

400

600

800

1000

1200

1400

1600

1800

1000x1000 2000x2000 4000x4000

Ti
m

e
(S

ec
on

ds
)

Matrix Size

Matrix Multiplication Kernel Time

PGI-Host

PGI-Accelerator

19.72%

67.42%

12.86%

2.53%

75.58%

6.64%

0.40%

95.54%

4.06%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00% 120.00%

Initialization

Computation

Data Transfer

Percentage Spent

GPU Kernel Time Breakdown (%)

4000x4000

2000x2000

1000x1000

0

50

100

150

200

250

1000x1000 2000x2000 4000x4000

Im
pr

ov
em

en
t R

at
io

 (x
)

Matrix Size

Ratio Host Version/ GPU
Kernel Time

Observations
  As problem size increases, host-version of matrix

multiplication suffers from cache size and memory
bandwidth.
  True even for blocked/tiled best version (see later).

  Improvement ratio increases from 98x to 200x as
problem size increases

  Data transfer time becomes less relevant for bigger
problem sizes.
  96% is spent computing the kernel in GPU for 4000x4000
  4% in data transfer from host to GPU.

  Small kernel sizes suffer from one time overhead
initialization.

 do 00100 ib = 1,nbi
 ilo = (ib-1)*bsi + 1
 ihi = min((ilo+bsi-1),rowc)
 do 00200 jb = 1,nbj
 jlo = (jb-1) * bsj + 1
 jhi = min((jlo+bsj-1),colc)
 do 00300 kb = 1,nbk
 klo = (kb-1) * bsk + 1
 khi = min((klo+bsk-1),cola)
!$acc region
 do 00400 j = jlo,jhi
 do 00500 k = klo,khi
 myconstant = b(k,j)
 do 00600 i = ilo,ihi
 c(i,j) = c(i,j) + a(i,k)*myconstant
00600 continue
00500 continue
00400 continue
!$acc end region

Another idea: “Places”

  Define a place that code and data can be
associated with

  A place can then be associated with an
accelerator

  Complete data environment in the place
  Define data communication via streams/pipes
  Flexibility in combination with the current

OpenMP programming model

Place and Data

  -Define the number of places and
associate with hardware attribute
  omp_place_t p[N] // for static declaration
  P[N-1] = omp_GPU // the last place is GPU

  #pragma omp place(p[N-1])
  shared – data shared among all places
  shared_on_place(variables) – data shared on

the current place
  Private – data private to each task/thread

