Toward Simplifying Applicatior
Development Ofigk
icore Platfor.

erogeneou
e

-Barbara Chapman.gss

T MatNd s g araYa e WaXa®n
............

. e T o v S) 1
' LRI - —— re= SRS ;
- " ——— e R -
- E L -
£y ~ % at J & - ‘
T R
- . e o ’}Qa-‘_‘ L
- ¥ e S =
3 - R T A - i o
' oo % Sisgleaty, T e o ' s

‘ Agenda

= The Accelerator Challenge
= Directives for Accelerators?

That was then: Multicore

D)

| >1GHz CPU (8|8 8|8 8| &
N 3|a|a|la|a|ala
0100|0000
X ||| |||
< << << | < | <
[I o W o WY O o T I R I S A 0 8
D DD |D (D | DD
Elele|lelele]lE e ¢
S(ZS|S(=|= 2= JO
HEHEH RS lﬂtel)
zlz|2(z|3| z|z|=nare ‘
V 4|+ |<|<|<+|<+|<|Functs
Crossbar -
’ 4-way banked L2 Cache Core 2
Memory Memory Controller D‘n

IBM Power4, 2001 :
sun T-1 (Niagara), 2005) rocks the boat 2005

Small number of cores, shared memory
Each core: single thread or multithreaded, complex or simplified

Resources (L2 cache, memory bandwidth): shared or separated
System built from homogeneous or heterogeneous cores

‘ ClearSpeed Accelerator: CSX600
demgned for HPC

Processor Core:
— 40.32 64-bit GFLOPS
— 10W typical
— 210MHz
— 96 PEs, 6 Kbytes each
— 8 redundant PEs
SoC details:

— integrated DDR2 memory
controller with ECC support

— 128 Kbytes of SRAM
Design details:
— IBM 130nm process

— 128 million transistors (47%
logic, 68% memory)

Sampled Q3 2005

Copyright © 200/-0 CleardSpeed
Technology plc. All rights
reserved.

‘ This 1s Now: Accelerators Galore

Today’s accelerators :
— Mostly Nvidia GPGPUs
— Program via CUDA

Thread Execution Control Unit .
— [—l_l Two levels of parallelism:
- BN S (U) e — DOALL (fully parallel, outer

loops)
— Synchronous (SIMD or vector,
inner loops)
— No SIMD/Vector operations

— QOperate on rectangular domains
of 2 or 3 dimensions
No DOALL synchronization

Device Memory — synchronizations at inner level

 EEEE———— — Weak consistency model, i.e
memory flushes after barriers

=

‘ The Execution Model

= Host-accelerator device model
o Accelerator memory limited, distinct

from host mem ory l Thread Execution Control Unit |

. . X86 Host 0 i ! 3
o No virtual address mapping - —
between them o B

= Host offloads accelerator
regions
= Host handles:

o Memory allocation on device
Initiate data transfer | Device Memory |
Sending kernel code to device —
Waiting for completion
Transfer results back from device

~vetinakernelsf .

Specnl

i

Local

oL O 0O O

GPGPU Programming Challenges

Low-level APIs

Requires major code change

o Many limitations on kind of code that can be executed

o Branching leads to high inefficiencies

o CPU (cache) optimizations generally not useful, not good starting
point for accelerator code

Large design space for accelerator kernels

o Need to carefully consider memory and register usage

o Number of threads per block

o Loop optimizations

o Data prefetching, offloading

Small differences in code can lead to large differences in
performance

Heterogeneous Cores: A High-level
Programming Model?

Heterogeneous (accelerator) programming is currently very low-
level

Number of questions to be resolved if we are to provide one
programming model across gen.-purpose CPUs and accelerators

How to identify code that should
be accelerated?

HOW to move d ata between host Element Interconnect Bus (96 Bytes/cycle)
cores and other devices?

What is role of user?

L1

Element |5
(PPE)

To External 10 NI

|
|
£
(]
<
©
=
[0]
®
(11]
o

Power
Processor

Can We Standardize?

There is not just one kind of accelerator

o GPGPU, FPGA, DSP, ARM, Cell, Vector

o Different range of instructions

Programming model for accelerators must suit variety of
architectures and applications

o What kind of code will run on accelerator? Arbitrary
sequential regions, loops, parallel code?

o How do we optimize for memory use?

What kinds of applications need to be supported?
o “Streams” programming?

o Embedded applications?

MCA develops low-level interfaces to
"glue” heterogeneous components

The OpenMP ARB

OpenMP is maintained by the OpenMP Architecture
Review Board (the ARB), which

Interprets OpenMP
Writes new specifications - keeps OpenMP relevant
Works to increase the impact of OpenMP

Members are organizations - not individuals

o Current members

Permanent: AMD, Caps Entreprise, Cray, Fujitsu, HP, IBM, Intel,
Microsoft, NEC, PGI, SGI, Sun, Texas Instruments

Auxiliary: ASCI, cOMPunity, EPCC, KSL, NASA, RWTH Aachen

Existing OpenMP-like approaches

PGl

o Define a region of code running on accelerators

CAPS

o Define codelet running on accelerators and data
transfer

Acotes Project (Barcelona, INRIA,..)
o Define tasks on accelerators

IBM
o Overload OpenMP directives, avoid extensions

What kind of code region can be

mapped to accelerator?

OpenMP parallel region
Worksharing construct

Tasks

Arbitrary well-structured region
All of the above?

CAPS: Hybrid Application View

awI} uonNdaXx3

Application
1 Application
Hybrid Processor System
¢ - - 1
| _2A |
QE) _____Z_E____ | m
=] 2¢ 2A 2B 2C
c
S ontrol and data
= . I:ransfers N e
O
Il%) 3A 3A 3B
I \/
3B 4
v
Parallel and distributed
E execution
v
Sequential

——execution

CAPS HMPP Approach

Preserve application code legacy

Integrate HWAs in applications with minimal disruption
Provide HWA interoperability

Mix HMPP and OpenMP to exploit HWAs and general
purpose cores

Use best parallel version according to execution context

OpenMP directives in codelets

Codelet will instantiate threads

OpenMP directives outside codelets
One codelet per OpenMP thread using HWA

Existing Approaches: CAPS HMPP

Declare hardware specific CPU HWA

implementations of functions
(HMPP codelets) o

o Can be specialized to the remote
execution context (data size, Application data | 7| Application

data data

Download

remote data

Codelet calls (RPC)

o Synchronous, asynchronous

properties

Remote Stream cores
FProcedure ca

Data transfers

o Data prefetching

Synchronization barriers

o Host CPU will wait until remote
computation is complete

CAPS: Multiple Devices

Use #D accelerators in parallel

#pragma omp parallel for, private (3J)
for (3Jj=0;33<#D;jj++){
for (j=ji*(n/#D); j<jj*(n/#D)+(n/#D); J++){
#pragma hmpp tospeedupl callsite
simplefuncl(n,tl1l[]j],t2,t3[]],alpha);
}
#pragma hmpp tospeedupl release

}

#pragma omp parallel for, private (j)
for (jj=0:jj<#Djj++)}
for (j=jj*(n/#D); j<jj*(n/#D)+(n/#D); j++){
#pragma hmpp tospeedupl callsite
simplefuncl(n,t1[j],t2,t3[j],alpha);
}
#pragma hmpp tospeedupl release

}

shared memory

I

HWA X 4 HWA

core core

Existing Accelerator Approaches: PGI

Compiler directives for to accelerate regions of
C/Fortran code.

o OpenMP-like

o Incremental development

Features:

o Initializes accelerator

o Manages data and program transfers between host
and accelerator

a Directives are hints, not commands

o User guidance: data scoping, mapping of loops,
performance details.

PGI Directives

C:

#pragma acc region [clause [,clause]...] new-line

Fortran:
I$acc region [clause [, clause]...]

Loops within the structured block will be compiled
into accelerator kernels if possible. This might
require moving data in/out of the device.

‘Clauses

= !$acc region [clause [, clause]...]

l Thread Execution Control Unit |
. ”r X86 Host 0 | 3]
o If (condition) -

0 copy (variable list) e “FEER

= copy in from host to accelerat 1 = =
o copyin(variable list) i m % m “*

= copy in from host to accelerat - . . -
0 copyout(variable list) Devce Memory

|
 —

= copy out from accelerator to hos

0 local(variable list)
) Tttt rat —

‘ Clauses

= 1$acc do [clause [, clause]...]

private (variable list)
cache (variable list)

o host [(width)]

o parallel [(width)] o (_,_lu ‘Th'eadfxewtwffon"olun" B
0 seq [(width)] N
o vector [(width)]

o unroll (width) =Y = P

o kernel Memory . ‘

2 shortloop o

a

a

EXample Compiler might generate
double precision A(rowa,cola), B(cola,colb), C(rowa,coll, ks kSt

I$acc region

1$acc& copy(c(1:rowa,1:colb)), copyin(b(1:cola 1:colb),a(1:rowa,1:cola))
do j=1,colc

i=1,row
do ,TOWC Data that should be allocated and
sum = 0.0d00 offloaded to accelerator:
do k=1,cola
_ C L) K - Generating copy(c(1:rowa,1:colb))
= +
sum = sum + a(i,k) * b(k,j) Generating copyin(b(1:cola,1:colb))
enddo Generating copyin(a(1:rowa, 1:cola))
c(i,j) = c(i,j) + sum
enddo
endo

I$acc end region

Comments
Kernels generated from loop nest in accelerated

region

o Compiler must prove loops are independent!

Compiler will attempt to find two levels of parallelism
o Across Multiprocessors (parallel)

o Within Processor/Warps (vector)

Compiler will attempt to find a good schedule

o Vector lengths scheduled to warps
o Strip-mine loops to achieve desired schedule
o Define parallel loops distributed across processors

o Determine Grid and Block sizes in GPU

Block size fixed by compiler, grid size will dependent on the
size of the data passed to GPU

utput from compiler:

Compiler generates
Block size: 16x16

Choices: The Productive Approach

High-level approach
Less code modification, potentially portable
Directives are easiest to fit in with status quo: Prescriptive or hints?
Some amount of adaptivity to given configuration and workload:
code should still run even if accelerator is not available
Data management is crucial. Persistent data, timing of allocation,
de-allocation and transfer

Implementation
Does the user prescribe or influence some of major decisions?
o Number of threads in block? Loop optimizations?
o Data movement?

Tools for experimenting with different alternatives?

A number of companies are exploring this intensively

PMAP35X processor: Laptop like performance at handheld power level

Performance _ Applications include: ,
* High-performance Superscalar ARM® Cortex™-A8 featuring NEON = Automotive Infotainment * Medical
co-processor with immersive 2D/3D Graphics accelerator = In-dash navigation = Patient monitoring
= HD video decode utilizing TMS320C64x+ DSP and video hardware = Consumer = Portable ultrasound
accelerators . PND = Industrial
= Low power utilizing TI's SmartReflex™ technology with option for integrated " PMP " Point of sale
and discrete Power Management ICs = Digital Video Camera = Smart white goods
Features
B Cores OMAP35x Processor
" Cortex A-8 with NEON™ SIMD Coprocessor / DSP-based TMS320C64x C64x+"_“ DSP and Display
+ DSP and video accelerators (max performance only) acc‘é:gfaotors Subsystem
" 600 MHz /430 MHz @ 1.35V (operating limits apply) LCD : .
® 550 MHz / 400 MHz @ 1.27V ARM® (3525/3530 only) i 10 bit DAC
= 2D/3D Graphics Engine - Up to 10M polygons per second - roller | ENc |10 bit DAC
B Memory Cortex -
= ARM:
POWERVR
= 16 kB |-Cache; 16 kB D-Cache; 256kB L2 A8 SGX™ Graphics (et
= TMS320C64x+ DSP and video accelerators CPU (3515/3530 only)

= L1 32kB Program Cache/32kB Data Cache + 48kB SRAM
= L2 64kB Program / Data Cache + 32 kB SRAM; 16 kB ROM
= On Chip: 64kB SRAM; 112kB ROM

B Peripheral Highlights
= Support for LPDDR1
= Support for NOR, NAND, SRAM, Pseudo SRAM
= USB 2.0 HS Compliant OTG Controller w/ 2 additional USB Host

Parallel I/F
ipe

L3/L4 Interconnect

Controllers Peripherals Connectivity
= Display subsystem with LCD and TV interface. Supports PIP, color space : Timers
conversion, resize and rotation. GP x12
= Camera I/F with CCD controller and Image-pipe (Preview, Resize,

Statistics :
= Package 1 (CBB): 12x12 mm, 0.4mm pitch, Package On Package (POP); 515 [kt EIEE
pin PBGA; production now; can be used with discrete memory McBSP| | |2¢
= Package 2 (CUS): 16x16 mm 0.65 mm pitch. 423 pin PBGA; production now. X5 X3
Utilizes Via Channel™ Array Technology with 0.8mm pitch plus design rules.

= Package 3 (CBC): 14x14 mm, 0.5 mm pitch POP; 515 pin PBGA; production [L SARE
now; must use POP memory x4 w/IRD

Note: Peripheral limitations may apply among different packages

POWERVR SGX™ 3D engine is licensed from Imagination Tech. Ltd.

<
m
&

Evaluation of the
PGI Fortran & C Accelerator
Programming Model

Evaluation
Experiments were done with 1 process and accelerator
(Tesla C1060) per node.

Application Bugget: Fox and Leyman parallel matrix
algorithms with different algorithms and matrix sizes per
node.

Compiler: PGI 9.0.3

Machine: lens.ccs.ornl.gov
o 32 node cluster

o Nodes with 4 sockets, 64GB memory
quad-core AMD Opteron 8356
o Accelerators:
Tesla C1060, 4GB memory, 30 multi-processors, 240 cores
32 warp size, Capability 1.3
GeForce 8800 GTX, 800MB memory, 16 multi-processors, 128 cores
32 warp size, Capability 1.0

Seconds

20

18

16
14

o N b OO O

Matrix size 1000x1000

Matrix Multiplication Kernel Time

N

of processors

GPU Kernel Time (Grid: 63x63, Block: 16x16)

of Processors

16

16

=0—PGl-Host

== PGl-Accelerator

Improvement Factor (x)

102
101
100
99
98
97
96

Ratio Host Only vs. GPU

Kernel Time

1 2 4 8

Microseconds

80000200000

of Processors

B Data Transfer Time
Kernel Computation Time
H |nitialization

“ Total Kernel Time

16

Observations

Two levels of parallelism generated
o Grid size 63x63, Block size 16x16

Host version of Matrix-Multiplication not optimized

O(n2) data transfer vs. O(n3) computations

o Transfer time vs. Kernel Computation time.
o Average of 19% of total GPU kernel time is transferring data.

GPU version of matrix multiplication highly parallel
o ~98x improvement

The matrix algorithm is not optimized for the Host
version. (No blocking/tiling, etc)

ﬂ)ifferent Sizes of Matrix MultipRlication

Time (Seconds)

1800
1600
1400
1200
1000
800
600
400
200
0

Matrix Multiplication Kernel Time atio Host Version/ GPU
Kernel Time
/ 250
x
/ o 200
7/ K
150
/ 5
7 ~4—PGl-Host £ 100
/ == PGI-Accelerator 5 l
o 50
E
2 0 T T 1
; 0 - 1000x1000 2000x2000 4000x4000
1000x1000 2000x2000 4000x4000 Matrix Si
atrix Size
Matrix Size
GPU Kernel Time Breakdown (%)
4.06%
Data Transfer H64%
12.86%
95.54%
Computation 0.58% 4000x4000
° ® 2000x2000
0.40% % 1000x1000
Initialization 2.53%
19.72%

Percentage Spent

Observations

As problem size increases, host-version of matrix
multiplication suffers from cache size and memory

bandwidth.

o True even for blocked/tiled best version (see later).
Improvement ratio increases from 98x to 200x as
problem size increases

Data transfer time becomes less relevant for bigger
problem sizes.

o 96% is spent computing the kernel in GPU for 4000x4000
o 4% in data transfer from host to GPU.

Small kernel sizes suffer from one time overhead
Initialization.

do 00100 ib = 1,nbi
ilo = (ib-1)*bsi + 1
ihi = min((ilo+bsi-1),rowc)
do 00200 jb = 1,nbj
jlo=(jb-1) * bsj + 1
jhi = min((jlo+bsj-1),colc)
do 00300 kb = 1,nbk
klo = (kb-1) * bsk + 1
khi = min((klo+bsk-1),cola)
I$acc region
do 00400 j = jlo,jhi
do 00500 k = klo,khi
myconstant = b(k,))
do 00600 i = ilo,ihi
c(i,j) = c(i,j) + a(i,k)*"myconstant
00600 continue
00500 continue
00400 continue
I$acc end region

Another 1dea: “Places”

Define a place that code and data can be
associated with

A place can then be associated with an
accelerator

Complete data environment in the place
Define data communication via streams/pipes

Flexibility in combination with the current
OpenMP programming model

Place and Data

-Define the number of places and
associate with hardware attribute

o omp_place_t p[N] // for static declaration
o P[N-1] = omp_GPU // the last place is GPU

#pragma omp place(p[N-1])
o shared — data shared among all places

o shared_on_place(variables) — data shared on
the current place

o Private — data private to each task/thread

