
The End of Denial Architecture
and The Rise of Throughput Computing

Bill Dally
Chief Scientist & Sr. VP of Research, NVIDIA

Bell Professor of Engineering, Stanford University
September 25, 2009

Fall Creek Falls Workshop

Outline

Performance = Parallelism
Efficiency = Locality
Single-thread processors are in denial about these
two facts
We are entering the era of Throughput Computing
CUDA expresses parallelism and locality
The road ahead

Moore’s Law

In 1965 Gordon Moore predicted
the number of transistors on an
integrated circuit would double
every year.

Later revised to 18 months

Also predicted L3 power scaling
for constant function

No prediction of processor
performance

Moore, Electronics 38(8) April 19, 1965

MoreMore
TransistorsTransistors

MoreMore
ValueValue

MoreMore
PerformancePerformance

Architecture Applications

The End of ILP Scaling

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1980 1990 2000 2010 2020

Perf (ps/Inst)

52%/year

19%/year

ps/gate 19%
Gates/clock 9%

Clocks/inst 18%

Dally et al., The Last Classical Computer, ISAT Study, 2001

Explicit Parallelism is Now Attractive

1e-4
1e-3
1e-2
1e-1
1e+0
1e+1
1e+2
1e+3
1e+4
1e+5
1e+6
1e+7

1980 1990 2000 2010 2020

Perf (ps/Inst)
Linear (ps/Inst)

52%/year

74%/year

19%/year
30:1

1,000:1

30,000:1

Dally et al., The Last Classical Computer, ISAT Study, 2001

4/6/09

Single-Thread Processor
Performance vs Calendar Year

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo
rm

an
ce

 (v
s.

 V
A

X
-

25%/yea

52%/yea

20%/yea

Source: Hennessy & Patterson, CAAQA, 4th Edition

Technology Constraints

CMOS Chip is our Canvas

20mm

4,000 64b FPUs fit on a chip

20mm64b FPU
0.1mm2

50pJ/op
1.5GHz

200,000 16b MACs fit on a chip

20mm64b FPU
0.1mm2

50pJ/op
1.5GHz

.

16b MAC
0.002mm2

1pJ/op
1.5GHz

Moving a word across die = 124MACs, 10FMAs
Moving a word off chip = 250 MACs, 20FMAs

20mm
64b FPU
0.1mm2

50pJ/op
1.5GHz

.

16b MAC
0.002mm2

1pJ/op
1.5GHz

64b 1mm
Channel

25pJ/word
10

mm
 25

0p
J,

4c
yc

les
16b 1mm
Channel
6pJ/word

10
mm

 62
pJ

, 4
cy

cle
s

64b Off-Chip
Channel
1nJ/word

16b Off-Chip
Channel

250pJ/word

64b Floating Point 16b Fixed Point

Discontinuity 2
The End of L3 Power Scaling

Gordon Moore, ISSCC 2003

Performance = Parallelism

Efficiency = Locality

The End of Denial Architecture

Single thread processors are in denial about
parallelism and locality
They provide two illusions:

Serial execution
Denies parallelism
Tries to exploit parallelism with ILP – limited scalability

Flat memory
Denies locality
Tries to provide illusion with caches – very inefficient
when working set doesn’t fit in the cache

We are entering the era of
Throughput Computing

Applications

Scientific Applications

Large data sets
Lots of parallelism

Increasingly irregular (AMR)
Irregular and dynamic data structures
Requires efficient gather/scatter

Increasingly complex models
Lots of locality

Global solution sometimes bandwidth
limited

Less locality in these phases

Embedded Applications

Codecs, modems, image processing,
etc…
Lots of data (pixels, samples, etc…)

Lots of parallelism
Increasingly complex

Lots of parallelism
Lots of data dependent control

High arithmetic intensity
Lots of locality

Performance = Parallelism

Efficiency = Locality

Fortunately, most applications have lots of both.

Amdahl’s law doesn’t apply to most future applications.

Stream Processor Architecture

Organize computation to

Optimize use of scarce bandwidth
Minimize expensive data movement
Keep scarce bandwidth resources busy

Take advantage of plentiful arithmetic
Operate in parallel when data is local

Avoid denial architecture
Don’t hide parallelism or locality

Flat, serial model inhibits optimization

Optimize use of scarce bandwidth

Provide rich, exposed storage hierarchy

R

RM

A

R

A

R

A

Switch

R

A

R

A

R

A

Switch

R

A

R

A

R

A

Switch

RM RM

Switch

CM

LM

Switch

Global Memory

Optimize use of scarce bandwidth

Provide rich, exposed storage hierarchy
Explicitly manage data movement on this hierarchy

Reduces demand, increases utilization

Compute
Flux

States

Compute
Numerical

Flux

Element
Faces

Gathered
Elements

Numerical
Flux

Gather
Cell

Compute
Cell

Interior

Advance
Cell

Elements
(Current)

Elements
(New)

Read-Only Table Lookup Data
(Master Element)

Face
Geometry

Cell
Orientations

Cell
Geometry

A CUDA-Enabled GPU is
a Throughput Computer

240 scalar processors
30SMs x 8SPs each

> 1TFLOPS peak
Exposed, hierarchical memory
10-200x performance and
efficiency vs a latency-
optimized processor

GeForce GTX 280 / Tesla T10

CUDA Parallel Compute Architecture
Many processors – eventually thousands

Latency tolerant - execute 1000’s of threads

On-chip shared-memory

CUDA programs scales across any size GPU
32 32 SP CoresSP Cores128 SP Cores128 SP Cores240 240 SP CoresSP Cores

Heterogeneous Computing

Overlap parallel execution with serial execution
Run parallel sections on throughput processor

5GFLOPS/W – 1,000s of threads
Run serial section on latency optimized processor

0.2GFLOPS/W – but one thread runs really fast
Not an accelerator

A Throughput Processor

CUDA

CUDA – A substrate for GPU computing

Application

C OpenCL Fortran

CUDA GPU

C++ DX11
Compute …

CUDA: ‘C’ FOR PARALLELISM

void saxpy_serial(int n, float a, float *x, float *y)

{

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

// Invoke serial SAXPY kernel

saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x, float *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

// Invoke parallel SAXPY kernel with 256 threads/block

int nblocks = (n + 255) / 256;

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

Standard C Code

Parallel C Code

Hierarchical organization

Thread
per-thread

local memory

Block
per-block

shared
memory

Kerne
l 0

. .
.

per-device
global

memory
. . .

Kerne
l 1

. . .
Global barrier

Local barrier

Ease of Programming

Source: Nicolas Pinto, MIT

Nexus Code Debugging

Strong integration with the Visual Studio Shell.

Hardware Breakpoints

Variable and

Memory
inspection

Parallel‐aware debugging

View performance from higher level using

 correlated CPU, GPU, thread, and OS data.

Nexus Profiling

Seamless Development Experience

Visual Studio Integration

GDB integration

Visual Profiler

Huge Speed-Ups Across Many Fields

32 Tesla S1070s32 Tesla S1070s 2000 CPU Servers2000 CPU Servers

45 45 kWattskWatts 1200 1200 kWattskWatts

~$400K~$400K ~$8M~$8M

31x Less Space31x Less Space

27x Lower Power27x Lower Power

20x Lower Cost20x Lower Cost

Equal PerformanceEqual Performance11 11

Oil & Gas: Seismic Processing

Financial – Bond Pricing

48 Tesla Cards
96 Blades (CPU per GPU)
75% less space
67% less power

8,000 CPU Cores
1,000 Server Blades

<http://www.securitiesindustry.com/issues/19_103/-23907-1.html> .

Current CUDA Ecosystem

ApplicationsApplications LibrariesLibraries
FFTFFT

BLASBLAS
LAPACKLAPACK

Image Image
processingprocessing

Video processingVideo processing
Signal Signal

processingprocessing
VisionVision

ConsultantsConsultants OEMsOEMs

LanguagesLanguages
C, C++C, C++
DirectXDirectX
FortranFortran
OpenCLOpenCL
PythonPython

CompilersCompilers
PGI FortranPGI Fortran
CAPs HMPPCAPs HMPP

MCUDAMCUDA
MPIMPI

NOAA Fortran2CNOAA Fortran2C
OpenMPOpenMP

UIUCUIUC
MITMIT

HarvardHarvard
BerkeleyBerkeley

CambridgeCambridge
OxfordOxford

……

IIT DelhiIIT Delhi
TsinghuaTsinghua

DortmundtDortmundt
ETH ZurichETH Zurich

MoscowMoscow
NTUNTU
……

Over 200 Universities Teaching Over 200 Universities Teaching
CUDACUDA

ANEO

GPU Tech

Oil &
Gas

Finance

Medical Biophysics

Numerics

Imaging

CFD

DSP EDA

http://www.supermicro.com/
http://en.wikipedia.org/wiki/File:Logo_groupe_bull.jpg
http://images.google.com/imgres?imgurl=http://fishtrain.com/wp-content/uploads/2007/09/cray_logo.gif&imgrefurl=http://fishtrain.com/2007/09/03/nvidias-playbook/&usg=__mBEPjqB6tUo0mps50ld866NdmmI=&h=70&w=160&sz=3&hl=en&start=8&sig2=erIWlru80_C67bxBapde6g&tbnid=ooG9_suq3ywK-M:&tbnh=43&tbnw=98&prev=/images?q=cray+logo&gbv=2&hl=en&ei=aHYpSvyWEo-ctgPd-dXxCg
http://www.google.com/imgres?imgurl=http://blog.taragana.com/wp-content/uploads/2009/05/nec-logo.jpg&imgrefurl=http://blog.taragana.com/index.php/t/east-asia/&h=354&w=354&sz=8&tbnid=YJa5kHMJJ5aMmM:&tbnh=121&tbnw=121&prev=/images?q=NEC+logo&hl=en&usg=__vqs8CIGTn2HFsKXlXcsnKjhGaww=&ei=Q98zSsTUG4vWsgPysrDODg&sa=X&oi=image_result&resnum=2&ct=image

GPU 2015

CPU scaling ends, GPU continues

Source: Hennessy & Patterson, CAAQA, 4th Edition
2016

A 2015 GPU*

Architecture continues to turn transistors into GPU
performance

14nm technology
~1,700 cores (5,100 FPUs) at ~2.6GHz (50mW each)
~27TFLOPS (SP), 9 TFLOPS (DP)
~1.2TB/s of memory bandwidth

~20x the performance of today’s GPU
More general-purpose

*This is a sketch of a what a GPU in 2015 might look like, it does not reflect any actual product plans

Conclusion

Conclusion – Parallelism and
Locality for efficient computation

Denial architecture is at an end
We are entering an era of Throughput Computing

Heterogeneous computers
Value comes from Throughput Applications running on Throughput
Processors (like a GPU)

Performance = parallelism, Efficiency = locality
Applications have lots of both

Stream processing
Many ALUs exploit parallelism
Rich, exposed storage hierarchy enables locality

Result: performance and efficiency
TOPs on a chip
20-30x efficiency of conventional processors.
Performance portability

GPUs are continuing to scale 20x by 2015

In the future power-limited computing
environment a throughput-optimized
computing platform is the only viable
alternative.

pJ/FLOPS (sustained)

	The End of Denial Architecture�and The Rise of Throughput Computing
	Outline
	Moore’s Law
	Slide Number 4
	The End of ILP Scaling
	Explicit Parallelism is Now Attractive
	Single-Thread Processor Performance vs Calendar Year
	Technology Constraints
	CMOS Chip is our Canvas
	4,000 64b FPUs fit on a chip
	200,000 16b MACs fit on a chip
	Moving a word across die = 124MACs, 10FMAs�Moving a word off chip = 250 MACs, 20FMAs
	Discontinuity 2�The End of L3 Power Scaling
	Performance = Parallelism��Efficiency = Locality
	The End of Denial Architecture
	We are entering the era of �Throughput Computing
	Applications
	Scientific Applications
	Embedded Applications
	Performance = Parallelism��Efficiency = Locality
	Stream Processor Architecture
	Organize computation to�
	Optimize use of scarce bandwidth
	Optimize use of scarce bandwidth
	A CUDA-Enabled GPU is �a Throughput Computer
	CUDA Parallel Compute Architecture
	Heterogeneous Computing
	CUDA
	CUDA – A substrate for GPU computing
	CUDA: ‘C’ FOR PARALLELISM
	Hierarchical organization
	Ease of Programming
	Nexus Code Debugging
	Nexus Profiling
	Seamless Development Experience
	Slide Number 36
	Huge Speed-Ups Across Many Fields
	Oil & Gas: Seismic Processing
	Financial – Bond Pricing
	Current CUDA Ecosystem
	GPU 2015
	CPU scaling ends, GPU continues
	A 2015 GPU*
	Conclusion
	Conclusion – Parallelism and Locality for efficient computation
	In the future power-limited computing environment a throughput-optimized computing platform is the only viable alternative.

