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The U.S. Initially Built Smaller Sized 
Commercial Nuclear Power Plants
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Weinberg Study* (1985) Introduced 
Notion of Deliberately Small Reactors 

• Motivated by lessons learned from the first nuclear era

• Explored emerging reactor designs that were inherently 
more forgiving than large LWRs

• Main findings:
– Post-TMI LWRs pose very low risks to the public but investor 

risks and high and uncertain capital cost limit market viability
– Large LWRs are too complex and too sensitive
– “Inherently safe” concepts are possible and should be 

pursued, such as:
• The Process Inherent Ultimately Safe (PIUS) reactor
• The Modular High-Temperature Gas-Cooled Reactor (MHTGR)

*A. M. Weinberg, et al, The Second Nuclear Era, Praeger Publishers, 1985
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Sampling of SMR Concepts Under 
Development World-Wide

• Integral PWR: CAREM (Ar), IMR (Jp), IRIS (US), NuScale (US), 
mPower (US), SCOR (Fr), SMART (RoK)

• Marine derivative PWR: ABV (RF), KLT-40S (RF), NP-300 (Fr), 
VBER-300 (RF)

• BWR/PHWR: AHWR (In), CCR (Jp), MARS (It)

• Gas-cooled: GT-HTR-300 (Jp), GT-MHR (US), HTR-PM (Ch), 
PBMR (SA)

• Sodium-cooled: 4S (Jp), BN-GT-300 (RF), KALIMER (RoK), 
PRISM (US), RAPID (Jp)

• Lead/Pb-Bi-cooled: BREST (RF), ENHS (US), LSPR (Jp), 
STAR/SSTAR (US), SVBR-75/100 (RF)

• Non-conventional: AHTR (US), CHTR (In), Hyperion (US), 
MARS (RF), MSR-FUJI (Jp), TWR (US)
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LWR-Based SMR Designs Under 
Development in U.S.
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Gas-Cooled SMRs (NGNP options)

MHR (General Atomics)

PBMR (Westinghouse)

ANTARES (Areva)
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Liquid-Metal-Cooled SMRs

PRISM (General Electric) 4S (Toshiba/W) Hyperion (Hyperion)
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Interest in Smaller Sized Reactor 
Designs Are Beginning To (Re)Emerge

• Benefits
– Cheaper (capital outlay)
– Improved fabrication and construction logistics (especially 

domestic)
– Enhanced safety (robustness)
– Operational flexibilities (broader applications)

• Applications
– Smaller utilities
– Countries with financing or infrastructure constraints
– Distributed power needs (e.g. military base islanding)
– Non-electrical (process heat) customers
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Economic Benefits

• Total project cost
– Smaller plants should be cheaper
– Improves financing options and lowers financing cost
– May be the driving consideration in some circumstances

• Cost of electricity
– Economy-of-scale (EOS) works against smaller plants but can 

be mitigated by other economic factors
• Accelerated learning, shared infrastructure, design 

simplification, factory replication

• Investment risk
– Maximum cash outlay is lower and more predictable
– Maximum cash outlay can be lower even for the same 

generating capacity
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Staggered Build of SMRs Reduces Maximum Cash 
Outlay (Source: B. Petrovic, GaTech)
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Safety Benefits of DSRs

• Reduced source term
– Lower power means fewer fission products produced
– Can allow for increased margin, or reduced shielding, site 

radius, emergency planning zone, etc.

• Improved decay heat removal
– Lower decay heat generated in the reactor core
– More efficient passive decay heat removal from reactor 

vessel (volume-to-surface area ratio effect)

• Elimination of accident “opportunities”
– No large pipes in primary circuit means no large-break loss- 

of-coolant accidents
– Increased water inventory means slower system response to 

power transients
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Integral Primary System Configuration

• Enhances robustness by eliminating major 
classes of accidents (e.g., large pipe break).

• Simplifies design by eliminating unneeded 
safety systems, large piping and external 
vessels.

• Allows for compact containment (small plant 
footprint) to enhance economics and security.
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SMR Applications

• Electricity generation
– Smaller utilities with low demand growth
– Regions/countries with small grid capacity
– Installations requiring independent power
– Non-baseload possibilities

• Non-electrical power needs
– Potable water production (desalination)
– Advanced oil recovery (tar sands and oil shale)
– Hydrogen production
– Advanced energy conversion (coal-to-liquids, synfuels)
– District heating
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SMR Challenges – Technical 

• All designs have some degree of innovation in components, 
systems, and engineering, e.g.
– Integral primary system configuration

– Internal control rod drive mechanisms and pumps

– Multiplexed control systems/interface

• Longer-term systems strive for increased utility/security
– Long-lived fuels and materials for extended operation

– Advanced designs for load-following and co-generation

• Sensors, instrumentation and controls development are likely 
needed for all designs
– Power and flow monitoring in integral systems

– Advance prognostics and diagnostics for remote operations

– Control systems for co-generation plants
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SMR Challenges – Institutional 

• Too many competing designs
• Mindset for large, centralized plants

– Fixation on economy-of-scale
– Economy-of-hassle drivers
– Perceived risk factors for nuclear plants

• Traditional focus of regulators on large, LWR plants
– Standard 10-mile radius EPZ (in the U.S.)
– Staffing and security force size
– Plant vs module licensing

• Fear of first-of-a-kind
– New business model as well as new design must be compelling
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SMR Simulation “Opportunities”

• Many Mod&Sim benefits are shared with large plants
– Improved performance through reduced design margins and 

more rapid insertion of new technologies
– Expedited deployment through improved licensing review 

process

• Some issues are more specific to SMRs
– Impacts of reactor compactness (more tightly coupled)
– Development of new designs with new materials and physics
– Validation of new engineering on safety performance
– Impacts of different use (co-generation, power islanding, etc.)
– Reactor health for extended operation without refueling
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Summary

• The U.S. started  commercial nuclear power 
using smaller sized plants

• After initial experience with small units, plant 
size and complexity grew rapidly

• New SMRs offer many potential benefits

• SMRs do not compete directly with large 
plants—they offer customers a greater range 
of options

• They offer some unique simulation challenges
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THINK SMALL !

“Deliberately Small Reactors and the Second Nuclear Era,” 
Progress in Nuclear Energy, 51, p 589-603 (May-June 2009).
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