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What is a supernova and why is it
such a fun physics problem?




H=>He

He = C,0
C = Ne, Mg
0= Si,S
Si,S == Fe

Core —™

Gravity
Electromagnetic
Strong Nuclear
Weak Nuclear

The 1ron core contains about 3 times
the mass of our Sun, but it is roughly
the size of our Earth.

This 1ron core collapses under its own
weight until it 1s small enough to fit
inside Puget Sound.

At this point the core 1s as dense as
the nucleus of an atom and it cannot
compress any further. The rest of the
star ‘bounces’ off this hard core and
explodes off into space???
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SN 1987A: Supernovae are Asymmetric
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ABSTRACT

We regard the release of gravitational energy attending a dynamic change in configuration to be the
primary energy source in supernovae explosions. Although we were initially inspired by and agree in
detail with the mechanism for initiating gravitational instability proposed by Burbidge, Burbidge,
Fowler, and Hoyle, we find that the dynamical implosion is so violent that an energy many times greater
than the available thermonuclear energy is released from the star’s core and transferred to the star’s
mantle in a supernova explosion. The energy released corresponds to the change in gravitational potential
of the unstable imploding core; the transfer of energy takes place by the emission and deposition of

neutrinos.
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The simulation of core collapse supernovae with fully general relativistic, multi-angle, multi-frequency,
Boltzmann neutrino transport has been achieved for spherically symmetric cases.
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Go back to the first generation of 2D SN models which
showed low-order asymmetry in the accretion shock.

Neutrino-driven convection
breaks the initial spherical
symmetry, but is not
consistent with the low-order
asymmetry seen at late times
(100’s of msec after bounce).
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To investigate the dynamics of the stalled supernova shock,
we consider an idealized problem:

- SuperSoniC
b freefall
\
\
x steady
\ spherical
\ shock
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We focus on the hydrodynamics of the SN shock.

Euler equations for an ideal gas

p+ V- (pu) = 0,
di(pu) + V- (puu) + Vp = F,
O (pE) +V - (pEu) + V(pu) =G + pu- F,

Equations are evolved using VH-1,
based on the piecewise parabolic method.
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In One Dimension:

Analytical: Houck & Chevalier (1992) presented a
linear stability analysis.

Numerical: Blondin et al. (2003) perturb SAS and
watch the evolution.

Pressure Perturbation
\ # -
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—
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This post-bounce model provides an opportunity to verify supernova
codes against the results of a linear perturbation analysis.
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analytic
numerical

Foglizzo, Galletti, Sheck & Janka 2007

0,01 0,1 1 (r -r)r 10 100

Agreement between analytic and numerical methods for
linear growth of the SASI is OK — or not?
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Which Acoustic Mechanism?

Trapped Global Pressure Waves

The spherical accretion shock acts as an
acoustic cavity, with a trapped standing
wave growing exponentially with time.

10 Advective Acoustic Cycle Advected vorticity couples
§ to pressure perturbations at
0.5 some small radius, which
Z propagate radially outward
0.1 L+ ———F and perturb the shock.

5 10 15 20 25 30

(NOT “The Acoustic Mechanism’ of Burrows et al.!)
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The SASI is a common feature of 2D SN simulations...
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Does large-scale flow driven by
convection distort the spherical shock?
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Are bulk flows and entropy variations
created by the obhque shock?

—_— = e A W - e W P W -
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T'he Heart of the Matter  Neutrino neating depends on

neutrino lu ies, spectra,

and angular distributions
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" : = Xn Lo oy Ly Xp Lo oy 1
R l —>  Matter Flo €= i BN + B (R
Shock 13 ﬁ
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Ongoing 2D,3D Multi-Physics Supernova Models

Simulation Building Blocks

2 “RbR-Plus” MGFLD Neutrino Transport

S 2D PPM Hydrodynamics

< Lattimer-Swesty EOS

< Nuclear (Alpha) Network

< 2D Newtonian Gravity with GR Corrections
> Neutrino Emissivities/Opacities

» “Standard” + Elastic Scattering on Nucleons
+ Nucleon—Nucleon Bremsstrahlung

CHIMERA

SN o

)27
eI R
% [T, &

g7

“Ray-by-Ray” Approximation
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Size:
* 150,000 lines of executable code.

Language:

« Fortran 90 CHIMERA

Parallel Programming Model
 MPI (some OpenMP)

Major Components:
* Hydrodynamics: MVH3 (latest version of VH-1)

e Neutrino Transport: MGFLD_TRAN
* Nuclear Network: XNET

Libraries:
 LAPACK
« HDF5, pNETCDF
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An Emerging Picture from 2D Multi-Physics Models
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<2 Shock powered in part by neutrino heating from below, aided by convection.
< Shock distorted into cigar shape by the shock instability (SASI), which precipitates arrival
in oxygen layer.
2 Explosion occurs when shock reaches oxygen layer (marked in white).
= Density ahead of shock decreases rapidly there (less for shock to plow through).
= Nuclear burning (of oxygen) begins, depositing additional energy.

= Confluence of neutrino heating, convection, the SASI, nuclear burning, and drop in density
lead to an explosion at late times.
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SASI leaves imprint on supernova after breakout.

Originally used high
neutrino luminosity to drive
explosion; only small-scale
anisotropy.

Later, used self-consistent
model with delayed
explosion and SASI. Large-

scale anisotropy explains
many features of SN 1987A.

Kifonidis et al. 2003 Kifonidis et al. 2006
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Must move to 3D!

=
)

tial SASI discovery wi

1ni

pointed to the obvious need for

axisymmetric 2D simulations
models in full 3D.
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Evolution of the Mach Reflection

 Symmetry of Mach reflection broken in three dimensions.

Mach
Reflection

* Internal shock (orthogonal to supernova shock) leads to two counter rotating flows.
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PV 4 PR = aas NS\
e
ity 4 W

Mah 17407
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Ramifications...

SASI-induced

counter rotating
flows.

Inner flow capable of spinning up
remnant NS to 50 ms periods,
even beginning with spherically
symmetric initial conditions.

Implications for
= the growth of B fields?
= the supernova mechanism?
= supernova observables?

Blondin and Mezzacappa, Nature, 445, 58 (2007)
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CYo8

CYO09

3D Multi-Physics:
A Quantum Leap in Difficulty

Ncores =Nrays =N0 XNq)

Number of Latitudinal Longitudinal
Cores Zones Zones
12,168 78 156

(250 TF) (2-3 Degree (2-3 Degree
Resolution) Resolution)
73,728 192 384
(1 PF) (1 Degree (1 Degree
Resolution) Resolution)

Runtime: ~1 month per run at 1 ray per core.

= CY08: ~10 M processor-hours/run.
= CY09: ~50 M processor-hours/run.
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CHIMERA 3D Scaling
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3D simulations are running

Mass in the Gain Lay

Gain Layer [M_solar/s]
Explosion Energy [B]

Ultimately need to move beyond radial transport...
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Size:

* 40,000 lines of executable code and climbing.

Language:
e Fortran 90/95

Parallel Programming Model
* MPI

Major Components:
 Cell-by-cell AMR
 Magnetohydrodynamics
* (3D) Self-gravity
e Neutrino Transport (future)
* Nuclear Network (future)

Libraries:
* LAPACK (future)
e FFTW
* Silo/HDF5
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[B]

GenASIS: First Science Results

Magnetic Energy (256x768)
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Conclusion: There can be significant amplification of the
stellar core magnetic fields due to the SASI.

* Fields amplified to 10"> Gauss!
 Fields become dynamically significant.

[ms] Endeve, Cardall, and Mezzacappa (2008), in preparation
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The Need for Exascale Resources

liDominated by preconditioning of dense blocks.

FLOPS ~ N.NN.fN,” ~8x10% f

- Nonsymmetri
) 6 Block Structuret
N, =number of time steps ~1x10 with Outlying
: Band
N, = number of spatial zones ~512x512x512 "
N, =number of outer iterations per time step ~ 10 m
ense
N, =number of neutrino momentum zones Center

f&ILN,]1=[1,7680] Blocks

Complexity
Increases
with AMR

N, =N,xNyxN, xN,

N, =6
N, =number of neutrino energy groups ~ 20

N, =number of neutrino polar direction angles ~ 8

N, =number of neutrino azimuthal direction angles ~ 8

Algorithms critical!

Runtime:\~ 5f days per run on a1 EF machine (at 20% of peak).
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S What has changed?

. gz\glweak interaction physics. Summary and OuthOk
. Long.er simulation times. — '

T alRss |
= 3D SASI studies demonstrate need for 3D.
= First 3D multi-physics simulation w/ multi-frequency transport running on the ORNL LCF.

< What’s next?
* 3D.

S Longer Term
* Magnetic fields.
* Neutrino mixing.
* GenASisS.

< Challenges that lie ahead:
* Scaling.
* Fault tolerance.
* 3D stellar evolution.

< The need for exascale computing.
* No progress by waiting.
* Discovery at the terascale has changed supernova theory.

2 What role, large-scale, high-performance computing?
 Tightly coupled, nonlinear, multi-physics problem.
* Discovery through computing.
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