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Background

•
 

Difficult
 

classification/regression problems may involve a 
heterogeneous population

•
 

Divide and conquer approach
–

 

Partition the population and model each partition separately

•
 

Advantages (vs. “ensemble approaches”)
–

 

Learning models on more homogenous data
–

 

Improves accuracy
–

 

Simpler, more interpretable

 

models
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Motivation

•
 

Traditionally partitioning is a priori
–

 

Domain knowledge
–

 

Clustering algorithm

•
 

… but, a priori partitioning may be
 

suboptimal

•
 

Solution: Interleaving
 

partitioning and construction of 
prediction models 
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Approaches to Interactive Decomposition

•
 

Hard partitioning of input space
–

 

Change-point detection: Segmenting time series + fitting model per 
segment

•
 

Soft partitioning
 

of input space for regression
–

 

Mixture of Experts
•

 

Hierarchical versions

•
 

Output space partitioning
 

for modeling large number of 
classes



Dyadic Data Applications

•
 

Recommender system: customers, products, ratings
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Several Other Applications

•
 

Search advertizing
–

 

Web pages, ads, 
click-through rates

–

 

Users, pages, ads, 
click-though rates

•
 

Web search
–

 

Queries, web pages, 
relevance scores

•
 

Ecological studies
–

 

Species, sites, presence/absence

•
 

....
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Modeling Large-Scale Dyadic Data

•
 

Can we simultaneously
 

partition (along multiple modes) 
and predict?
–

 

Deodhar and Ghosh, KDD07, KDD09
–

 

Agarwal and Merugu, KDD07

zij
i

j
 

e.g. movies/ads

e.g. users/
web pages

xij

 

= {Ci

 

,
 

Pj

 

, Aij

 

}
covariates

e.g. ratings, CTR user 
features

movie 
features

joint 
features



8

Example –
 

Recommender System 

•
 

Problem: predict customer purchase decisions
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Possible Approaches

•
 

Collaborative Filtering

•
 

Classification
–

 
Logistic regression

•
 

Co-clustering or Biclustering
–

 
Bregman Co-clustering
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Collaborative Filtering

•
 

Collaborative Filtering –
 

technique for reducing 
information overload
–

 

Improves access to relevant products and information
–

 

e.g. Recommender systems that suggest books, films, music, etc.

•
 

Predict how well a user will like an unrated item
–

 

Based on preferences of a community

•
 

Preference judgments can be explicit or implicit
–

 

Explicit –

 

numerical ratings for each item
–

 

Implicit –

 

extracted from purchase records or web logs 
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Collaborative Filtering

-1 1 -1 1 1
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products

•
 

Find a neighborhood of 
similar customers
–

 

Based on known choices

•
 

Predict current purchase 
decision using preference of 
neighborhood

•
 

Ignores customer/product 
attributes

Low rank matrix factorization methods 
also focus on the “Z” matrix but  exploit more global properties
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Single Classification Model

1
-1
?
1
?
1
-1
1

Feature vector 
-

 

customer, product   
attributes

•
 

May not be adequate to 
capture heterogeneity

•
 

Does not use neighborhood 
information
–

 

Similarity of customers/products

Target variable 
-

 

Matrix entries
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Co-clustering

-1 1 -1 1 1
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Product clusters
•

 
Identifies neighborhood of 
similar customers and 
products 

•
 

Predicts unknown choice 
using known entries within 
the co-cluster

•
 

Ignores customer and 
product attributes
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Simultaneous Co-clustering and Classification

1 1

? -1

1 1 ? -1 1

? -1 1 -1 1

Classification 
Model 

Customer attributes

Product attributes
•

 
Exploits neighborhood 
information

 
and attributes

•
 

Iteratively clusters along 
both axes and fits predictive 
model in each co-cluster

•
 

Common framework for 
solving classification and 
regression problems
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Problem Definition (Regression)

•
 

Z m x n

 

matrix of “customers”
 

and “products”
–

 

Matrix entries are real numbers

 

(e.g. ratings)

•
 

Assumption: matrix entry is a linear combination of customer 
and product attributes (Ci and Pj ) + noise

–

 

Model parameters βT

 

= [β0

 

, βc
T, βp

T]
–

 

Attribute vector xij
T = [1, Ci

T

 

, Pj
T]

•
 

Aim: Simultaneously cluster customers and products into a 
grid of co-clusters, such that the values within each co-

 cluster are predicted by the same regression model

ij
T

ijz xβ=
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Regression Example

4 5 10 9 8 8
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21 11 17.1 26 24 15
3.1 4.5 8.5 6.6 4.5 6.1
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Regression Example

8.5 6.1 4.5 6.6 3.1 4.5
5 4 2.2 5.2 1 4
8.7 6.8 5 8 4 6.8
10 8 5 9 4 8
13.5 10 4 14 9.5 13
23.2 19 17 36 33 39
17.1 15 11 26 21 24
14.9 12 9.1 19 16 17.5

2
0
3
1
2
7
4
3

3 2 1 4 0 3

c

p

•
 

After rearranging rows and cols.



18

Regression Example
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6 4 2 5.2 1 4
9 7 5 8 4 6.8
10 8 5 9 4 8
13.5 10 4 14 9.5 13
23.2 19 17 36 33 39
17.1 15 11 26 21 24
14.9 12 9.1 19 16 17.5

2
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Regression Example

8.5 6.1 4.5 6.6 3.1 4.5
5 4 2.2 5.2 1 4
8.7 6.8 5 8 4 6.8
10 8 5 9 4 8
13.5 10 4 14 9.5 13
23.2 19 17 36 33 39
17.1 15 11 26 21 24
14.9 12 9.1 19 16 17.5

2
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2c + 3p 5c + p

c
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Reconstruction Errors

-2 -2.9 -3 -5.4 -2.9 -6
1.7 2.2 1.9 0.4 2.2 0.7
-5.3 -5.8 -6.1 -7.5 -5.6 -7.2
3.1 2.6 1.1 0.6 1.6 1.1
3 1 -3.5 2 3.5 2.5
-5.2 -7.9 -8.4 6.1 9.1 10.6
-0.5 -1.1 -3.6 6.9 7.8 6.4
0.9 -0.6 -2 3.5 6.4 3.5

-1.1 -0.8 0.2 -0.7 -0.7 -1.9
-1.6 0 1 2.3 2.5 2.2
-4.3 -3.5 -2.6 -8.6 -8.2 -8.7
1.3 2 1.7 1.5 0.9 1.6
2.5 1.8 -1.4 2 1.8 2
1.2 0 0.9 1 2 5
-0.5 0 -1 0 -2 -1
0.9 1 0.8 2 3 1.5

Reconstructed with simultaneous 
co-clustering and regression 

MSE = 7.9

Reconstructed with a single linear model
z = 1.2 + 3.6c + 1.5p

MSE = 21.8

Note: Reduced Parameter approaches available
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Objective Function

•
 

ρ: mapping from m rows to k row clusters
•

 
γ: mapping from n columns to l column clusters
–

 

Total of k * l regression models.
•

 
Weight (wuv ) associated with each matrix entry 
–

 

1 -

 

known entry, 0 -

 

missing
•

 
Find co-clustering (ρ, γ) and models (β’s) that minimize
the total squared error 

uv
T

vuuv

vu
uvuvuv

z

zzw

xβ )()(

,

2

ˆ

)ˆ(

γρ=

−∑



22

Row and Column Cluster Updates

•
 

Objective function is a sum of row/column errors
–

 

Assign each row to a row cluster that minimizes the row error
–

 

Row cluster assignment for row u

∑
=

−=
n

v
uvuvuvg

new zzwu
1

2)ˆ(minarg)(ρ

β11 β12

u

β21 β22

β31 β32

e1 (u)

e2 (u)

e3 (u)
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SCOAL Meta -Algorithm

Input: Data: Z, Weights: W, Attributes: C, P
Output: co-clustering (ρ,

 

γ), models {βs}β}

Initialize ρ,

 

γ
Iterate until convergence

•

 

Re-estimate model

 

for each co-cluster 
•

 

Re-estimate the co-clusters
–

 

Update row clusters –

 

assign each row to closest

 

row cluster
–

 

Update col clusters –

 

assign each col to closest

 

col cluster

Return ρ,

 

γ, {βs}β}

Guaranteed to converge to locally optimal solution
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Simultaneous Co-clustering and Classification

•
 

Elements of Z are class labels
 

(2 class problem)
•

 
Logistic regression model relating attributes to the class 
label
–

 

Log odds modeled as a linear combination of the attributes (= βTxij )

•
 

Find co-clustering (ρ, γ) and models (β’s) that minimize the 
total log loss (-ve log likelihood) 

∑ −+
vu

uv
T

vuuvuv zw
,

)()( ))exp(1ln( xβ γρ



25

Model Selection (M-SCOAL)

•

 

Cross validation procedure to select k and l
–

 

Minimize prediction error on the validation set
•

 

Top down bisecting greedy

 

algorithm

Run SCOAL with k=1, l=1
Repeat

1. Split row/column cluster with highest error
2. Initialize SCOAL with current partitioning
3. Accept split if validation error reduces

until no change in k and l

•

 

Gives better local minimum
•

 

Fast convergence 
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Recommender System Application

•

 

Predict unknown course choices of masters students
–

 

32 courses, 326 students
–

 

Student attributes: career aspiration, undergraduate degree
–

 

Course attributes: department, evaluation score

F –

 

measure plot Precision-Recall curve
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ERIM Marketing Dataset

•
 

Household panel data collected by A.C. Nielsen 
•

 
1714 customers, 121 products from 6 product categories 
(ketchup, sugar, etc.) 

•
 

Customer-product matrix cell values = # units purchased
–

 

Household Attributes –

 

income, # residents, male head employed, 
female head employed, total visits, total expense

–

 

Product Attributes –

 

market share, price, # times product was 
advertised

•
 

Predict # units purchased
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Data Sample

Income # members

Male 
head 
emp

Female 
head 
emp # visits

Total 
spent

12500 3 0 1 385 10432

37500 4 1 1 265 8047

7000 2 1 1 106 1703

37500 6 1 1 492 9473

7000 1 0 0 213 2569

12500 2 0 0 476 5582

17500 5 1 0 442 6473

12500 2 0 1 371 5696

7000 2 1 1 438 6053

7 17 0 0 0

2 1 0 0 0

0 1 0 0 0

2 2 5 0 4

1 1 1 0 0

0 1 1 0 0

1 0 6 3 1

0 1 0 0 0

3 0 2 0 0

Category sugar ketchup sugar tissue tuna

Price 1.4 1.1 0.9 1.4 1.3

Mkt. 
Share 1.1 24 2.128 10.3 1.7

# Times 
Adv. 6 40 16 0 3
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Dataset Details

•
 

Properties
–

 

Sparse –

 

74.86% values are 0
–

 

Very skewed –

 

99.12% values < 20, rest very high (outliers)

•
 

Standardization of product attributes and # units purchased 

•
 

Linear least squares -
 

very sensitive to outliers 
–

 

Separate models for high and low valued matrix entries
–

 

Threshold of 20 units purchased 
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Results

•
 

Model for low valued matrix entries 
–

 

Bulk of the data (99.12%)

Algorithm Test Error

Global Model (k=1,l=1) 4.24 (0.06)

CC (k=4,l=4) 4.002 (0.056)

Co-Cluster Models (k=4, l=4) 3.967 (0.034)

Reduced Parameter (k=4,l=4) 3.893 (0.052)

SCOAL(k=4,l=4) 3.965 (0.044)

M-SCOAL 3.832 (0.035)
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Market Segmentation and Structure

Attribute Global Cust Seg 3, 
Prod Seg 3

Cust Seg 4, 
Prod Seg 4

Cust Seg 1, 
Prod Seg 2

intercept
income
# members
male head emp.
female head emp.
# visits
total spent
price
market share
# times advertised

0.00 (1.00)
-0.02 (0.00)
0.03 (0.00)
0.00 (0.42)
0.00 (0.62)
0.02 (0.00)
0.10 (0.00)
-0.02 (0.00)
0.17 (0.00)
0.10 (0.00)

-0.42 (0.00)
-0.09 (0.31)
0.03 (0.74)
-0.06 (0.42)
-0.07 (0.31)
-0.11 (0.05)
0.48 (0.00)
-0.75 (0.00)
0.43 (0.00)
0.48 (0.00)

-0.14 (0.00)
-0.03 (0.00)
0.04 (0.00)
0.00 (0.87)
0.00 (0.45)
0.01 (0.06)
0.03 (0.00)
-0.02 (0.00)
0.09 (0.00)
0.04 (0.00)

0.15 (0.00)
-0.02 (0.42)
-0.04 (0.06)
0.05 (0.04)
0.02 (0.46)
0.11 (0.00)
0.09 (0.00)
0.42 (0.00)
0.16 (0.00)
0.04 (0.06)

Cheapest, most 
popular products

Coefficients of global model and sample co-cluster models

Low market 
share

High income, 
large # visits
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Lessons Learnt

•
 

Interpretable and actionable segmentation and models

•
 

Coefficients of co-cluster models differ significantly from 
global model
–

 

Multiple models required to capture heterogeneity 

•
 

Co-cluster models differ significantly
–

 

Different purchase factors important for different customer-product 
subsets 

•
 

Product attributes more indicative of preference
–

 

Elimination of insignificant predictors to get sparse models
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Extensions

•
 

Modeling time-series data (ICDM ‘08)
–

 

e.g. customer purchase behavior over time

•
 

Active Learning (SCECR’09)

•
 

Mining for the most reliable predictions (KDD’09)

•
 

Scalable, parallel implementation for large scale 
applications



Simultaneous Co-segmentation and Learning

•
 

Motivating example
–

 

Understand customer purchase behavior over time
–

 

Forecast future trends

•
 

Challenges
–

 

Shifting trends across time
–

 

Variability across customers

•
 

Simultaneously cluster customers and segment time
–

 

Learning a predictive model in each co-cluster

•
 

Segment
 

the time axis
–

 

Different from clustering –

 

violates ordering constraint

34



Algorithm

•
 

Iterative
 

algorithm similar to SCOAL
–

 

alternate between model update and cluster/segment assignment

•
 

Assignment of time segments
–

 

Dynamic programming (quadratic)
–

 

Greedy local search (linear)
•

 

Adjust segment boundaries to reduce objective function

35



Results on Tensor ERIM Dataset

•
 

Dollars spent by households per week at 5 stores
–

 

1240 households X 50 weeks X 5 stores

36

Algorithm Train R-sq. Test MSE Test R-sq.

Global 
Cluster Models
SCOAL
CoSeg

0.44
0.45
0.58
0.60

166.36 (1.27)
156.06 (1.36)
142.08 (0.99)
132.94 (0.88)

0.44
0.48
0.52
0.55

Prediction error averaged over 10 random 60-40 % training-test data splits



Active Learning

•
 

Learner selects instances to be labeled such that the 
generalization accuracy is improved the most

•
 

Example: predictive modeling in large scale recommender 
systems
–

 

Require large number of customers to rate many products
–

 

Obtaining ratings is expensive

•
 

Solution: Select those customers and products to query 
whose feedback improves the prediction model the most

37



Active Learning with Multiple Local Models

38

• Models in different regions have different fits
• Poorer fit in noisy/sparse regions of the input space

•
 

Idea:
 

acquire labels in regions with poor model fits
•

 
For SCOAL with linear regression models

Local model fit = co-cluster MSE
•

 
Leads to BlockRank policy
•

 

Fast, actionable
•

 

Generalized: can be applied to any local modeling technique 
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Hierarchical BlockRank

•
 

Learning multiple local models involved tuning a lot of 
parameters
–

 

May not have enough data 
–

 

Single global model may do better when training data is limited

•
 

Solution: increase model complexity (# local models) as 
more labeled data is acquired
–

 

Begin with a single co-cluster
–

 

Perform model selection step

 

every N iterations 
•

 

Increase # co-clusters if validation set error reduces
•

 

Use greedy “bisecting”

 

step to add one row or column cluster
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Evaluation of the BlockRank Policy

ERIM Marketing Data
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MovieLens Data

# local models learnt by 
Hierarchical BlockRank 

MSE on held-out test set



Mining for the Most Reliable Predictions from 
Dyadic Data

•
 

Importance of accessing accuracy of predictions
–

 

Limited resources
–

 

Hence, take action only on the most accurate predictions
–

 

E.g. stock market player strategy (regression)

•
 

Problem: rank predictions by estimate of their accuracy
•

 
Single linear model 
–

 

Classical approach: rank by prediction error variance
–

 

Dyadic data: rank by estimated mean row error + col error

•
 

SCOAL based ranking
–

 

Row-Col ranking: rank by estimated mean row error + col error
–

 

Block ranking: rank by co-cluster error

42



Modeling a Selected Data Subset: Robust SCOAL

•
 

Motivation
–

 

Need to make predictions for only a subset of the data
–

 

Can learn better models by detecting and discarding outliers

•
 

Aim: simultaneously cluster sr

 

of m rows, sc

 

of n cols into 
k x l co-clusters

•
 

Objective function: MSE over selected sr

 

x sc

 

matrix 
entries

•
 

Algorithm: dynamic prog. to select sr

 

rows, sc

 

cols in each 
iteration   



Comparing Ranking Techniques: MovieLens



Robust SCOAL Evaluation

sr sc % outliers 
discarded

% data 
discarded

900
1068
1236
1405
1573
1741

90
96
102
109
115
121

98.4
96.1
91.4
83.9
70.7

0

61.6
51.3
40.2
27.3
14.1

0

ERIM Marketing data: Outlier pruning for varying sr

 

and sc

 

values



Dataflow Solution to Co-clustering [KDD ‘09]

•
 

Exploits parallelism in Bregman co-clustering 
–

 

Parallelizes distance computation, learning co-cluster statistics

•
 

Application to Netflix recommender problem
–

 

100+ million

 

ratings, 480,000+

 

users, 17,770

 

movies
–

 

Netflix production runtime: days
–

 

Dataflow runtime:

 

16.31 min



Summary

•
 

SCOAL: actionable
 

and interpretable
 

predictive modeling 
technique for dyadic data

•
 

Extensions
–

 

Modeling time series data
–

 

Active learning
–

 

Modeling noisy datasets
–

 

Parallelization

•
 

Future work
–

 

Modeling in non-stationary domains, e.g. time drifts
–

 

Shrinkage
–

 

Robust error functions
–

 

Apply to a variety of very large datasets

47
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Predictive Discrete Latent Factor Models
 [D. Agarwal and S. Merugu ’07]

•
 

Similar motivation and problem setting
–

 

Prediction of missing matrix entries (dyadic response variables), 
given attributes (covariate information)

•
 

Uses co-clustering to solve a prediction problem
•

 
Response variable modeled as a sum of
–

 

Function of covariates (global structure) 
–

 

Co-cluster specific constant (local structure)

•
 

Exploits local structure
–

 

Co-cluster specific constant assumed as part of noise model
–

 

Teased out of global model residues
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Reduced Parameter Approach
 Model Update Step

Response variable: yij =  zij –
 

βp
TPj

Solve: y
 

= βc
TC 

Update customer coefficients

k least squares updates
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Update product coefficients

Response variable: yij =  zij –
 

βc
TCi

Solve: y
 

= βp
TP 

l least squares updates

Reduced Parameter Approach
 Model Update Step
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Short-Term Load Forecasting
 [M. Djukanovic et al. ‘93]

•
 

Problem: Forecast the hourly electric load pattern for a day

•
 

First level of division
–

 

Model working days, weekends and holidays separately

•
 

For each day type, cluster input data into coherent groups 
and train model in each group
–

 

Relation between input features and load profile stronger in each 
group vs. entire population

•
 

Classify test point into a cluster and use corresponding 
model to forecast load 
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Co-clustering

•
 

Simultaneously clusters along multiple axes
•

 
Exploits the duality between the axes 
–

 

Improves upon single sided clustering

•
 

Applications
–

 

Microarray data analysis (genes and experiments)
–

 

Text data clustering (documents and words)

•
 

Bregman Co-clustering [Banerjee et al. ‘06] 
–

 

Partitional: divides matrix into a grid of rectangular blocks
–

 

Can deal with missing data
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PDLF Model

))( ;()|(
1 1

IJ
T

ijij

k

I

l

J
ijIJijij gzfzp δμπ φ +== ∑∑

= =

βxx

•
 

Constrained mixture model
─ k * l components,  πIJ : mixture prior of  IJth component

•
 

Each component is a generalized linear model
─ fφ

 

: exponential family, g: link function
•

 
Global trends xij

Tβ
 

shared across the components
•

 
Each co-cluster/latent factor has an additional offset: δIJ
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Model Estimation

•
 

Generalized EM algorithm
–

 

Soft vs. hard

 

assignment

•
 

Main steps
–

 

Random initialization of row/column clusters and parameters
–

 

Repeat till convergence 
•

 

Estimate global model coefficients β

 

(Newton-Raphson’s method)
•

 

Estimate co-cluster offsets δIJ, 

•

 

Find the optimal row and column clustering 

•
 

Scalable: each iteration linear in # observations
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PDLF vs. Model CC

•
 

PDLF 
–

 

Single global model + co-cluster constants
–

 

Robust even when data is limited

•
 

Model CC 
–

 

k x l co-cluster models 
–

 

Works well when large amount of data is available

•
 

Complementary approaches

nm
jiij

T
ijijij jizfxzp 11)(),( ][,][),;(),,|( γρφ δγρ += xβ

nm
ij

T
ijijij jizfxzp

ji 11 ][,][),;(),,|(
)(),(
xβ

γρφγρ =
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Logistic Regression on Movie Lens

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

ci
si

on

 

 
Regression
Co−clustering
LatentFactor

Rating > 3: +ve
23 covariates

PDLF

Co-clustering
Logistic Regression
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Objective Function Details 

Predicted value: using 
co-cluster specific (linear) model

Sum over
all matrix entries 

•
 

Indicates how well the co-cluster models fit given data
•

 
Based on the prediction model, not cluster homogeneity!

•
 

Elementwise
 

squared error summed over all matrix entries

uv
T

vuuv

vu
uvuvuv

z

zzw

xβ )()(

,

2

ˆ

)ˆ(

γρ=

−∑
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Reduced Parameter Approach

•
 

Simultaneous co-clustering and prediction
–

 

k * l independent models
–

 

(1 + |C| + |P|) * k * l parameters 
–

 

May overfit

 

when training data is limited

•
 

Single model
–

 

(1 + |C| + |P|) parameters 
–

 

May not be adequate

•
 

Reduced Parameter
 

Approach
–

 

k * l models, but smoothing achieved by sharing parameters 
–

 

Customer (product) coefficients for all models in the same row 
(column) cluster are constrained to be identical

–

 

(1 + |C|) * k + (1 + |P|) * l parameters

•
 

Alternative: Shrinkage
 

between global model and local 
models
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Predicting Missing Values

•
 

If missing matrix entry  zuv is assigned to row cluster g 
and col

 
cluster h with model parameters βgh , predict zuv 

as

1.
 

Classification:

2.
 

Regression:

)exp(1
1)1(

uv
T
gh

uvzP
xβ−+

==

uv
T
ghuvz xβ=ˆ



Large Scale SCOAL

•
 

Expected to show maximum value on large datasets
–

 

Large heterogeneity 
–

 

Sufficient data available for learning parameters

•
 

Distributed, scalable implementation using Map-Reduce
 framework

–

 

Run on Hadoop

 

cluster

•
 

Can then analyze impact of data size, sparsity
 

on accuracy, 
computation time



SCOAL Map-Reduce Pseudo Code

<id, tuple>

<cc id, 
tuple>

<cc id, 
<tuple>>

<id, tuple>

Learn 
cc model

<id, tuple>

<row id, 
tuple>

<row id, 
<tuple>>

<id, tuple>

Agg. dist
and asign

Compute
dist.

<id, tuple>

<col

 

id, 
tuple>

<col

 

id, 
<tuple>>

<id, tuple>

Agg. dist
and asign 

Compute
dist.

Map Reduce Map Reduce Map Reduce

1. Learn co-cluster models 2. Update row clusters 3. Update col clusters

iterate
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