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Project ContextProject Context

Future HPC applications on heterogeneous platforms
• off (e.g., new NSF Track II machine)-chip and next, 

toward on-chip heterogeneous cores
• rich memory hierarchies, e.g., NUMAy g

New Execution Models
• diverse cores• diverse cores
• custom OS kernels
• I/O support

Accelerators and tool chains
• CUDA, OpenCL, …p
• opportunity for compiler-based optimization methods



Future Applications
Media and image processing:
• for dynamic web content
‘S fi h lik ’

Science and gaming:
• Fusion modeling
• High perf I/O: GTC Pixie3D XGC• ‘Snapfish‐like’

imaging
suite

• High perf. I/O: GTC, Pixie3D, XGC
• Libraries: 
LAPACK, BLAS,
VSIPL, …

Financial and risk analysis:
• Black Scholes
• Risk Analysis

Data‐intensive and web:
• Critical enterprise codes
• Data mining• Risk Analysis

• Derivatives processing
• Data mining
• Sensor data processing



Heterogeneous Platforms
• Asymmetries:

– Performance
• Different clock speeds, duty cycles
• Differing issue widths
• Varying cache sizesVarying cache sizes

– NUMA memory
– Toward ‘islands of cores’

Functional differences:
– Diverse accelerators: heterogeneous:

• Cell, GPU, Communications, Encryption, …

– Shared ISA: asymmetric:
• Missing SSE version• Missing SSE version
• Missing floating point
• Additional instructions for acceleration (Larrabee, …)



HyVM Project Goal
Uniform runtime model for heterogeneous platforms: 

Hybrid Virtual Machines
U if it ft b d l tf t i– Uniformity: software-based platform extensions:

• Virtual Execution Unit (VEU): uniform runtime representation for 
program executables, targeting heterogeneous cores

• Heterogeneity-awareness: system-level management methods forHeterogeneity awareness: system level management methods for 
improved platform utilization (incl. cache and energy) and application 
performance (SLAs)

• Dynamic platform emulation: runtime CK compilation or re-writing 
for diverse accelerator targets (via LLVM)for diverse accelerator targets (via LLVM)

– High performance: diverse executables:
• Commodity and custom VEU ‘containers’: Virtual Machines (VMs) 

– processes/threads – commodity cores; Special Executionprocesses/threads commodity cores; Special Execution 
Environments (e.g., NVIDIA) - Computational Kernels (CKs) -
accelerators

• Runtime and adaptive {CK} optimization for parallelism
St d d li t CK i d ti API (O CL• Standards-compliant CK programming and runtime APIs (OpenCL, 
CUDA)

• Compiler-based optimization techniques for {CK}



HyVM Project Elements
Attaining the uniform HyVM execution model

Leveraging virtualization technologies:– Leveraging virtualization technologies:
• Virtual Execution Units (VEUs)

– Finer grain schedulable entities than VCPUs
• Specialized execution environments (SEEs) for accelerators• Specialized execution environments (SEEs) for accelerators

– GViM for efficient GPU virtualization (Niraj Tolia, HP)
– Cellule: Dilma Silva, Jimi Xenides, Hubertus Franke (IBM)

• Montage: dynamic resource management for sets of VEUs (SLA• Montage: dynamic resource management for sets of VEUs (SLA-
awareness, runtime monitoring)

– Coordinated scheduling for accelerators – VMaCS
– InTuneS - system abstractions for coordinated management– InTuneS - system abstractions for coordinated management
– Cache-aware ‘region’ scheduling + correlation scheduling for 

shared ISA VEUs – addressing NUMA and asymmetric platforms
• Future hypervisors (using Xen): heterogeneity-awareFuture hypervisors (using Xen): heterogeneity aware

– Extended work: scalable hypervisor structures



HyVM Project ElementsHyVM Project Elements

– Leveraging evolving industry standards for accelerator APIs 
and interactions:

• Tool chain support for CUDA => LLVM/PTX translation, with 
future work on OpenCL – Ocelot

• Exploiting compiler methods to optimize execution regimes 
for sets of VEUs – Harmony

• Runtime APIs at CUDA level - GViM
– Exploring new programming and execution models:

• Datalog to GPU compilation
• Scheduling via on line performance models and dynamic• Scheduling via on-line performance models and dynamic 

code generation for GPU vs. Host ISAs Æ Ocelot/LLVM
• New analysis tools for debugging and performance tuning via 

emulationÆ Ocelot++emulation Æ Ocelot++
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Technical Elements – GViM and VMaCS
Vishakha Gupta, Niraj Tolia, othersp j

Extending Xen for efficient {CK} execution
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Technical Elements – GViM + VMaCS
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Technical Elements – GViM
GPU Guest Performance Baseline Results
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VMaCS Scheduling Methods - Examplesg p

• Round robin (RR)Round robin (RR)
– Some guest domain chosen every period
– Poller monitors its queues for the periodq p
– Moves to the next domain 

• XenoCredit
– Guest credits assigned at boot time
– Use these credits to calculate proportions 
– Poll domains for time proportional to their credits



BlackScholes: XenoCredit vs. Round Robin

• BlackScholes with 60000 options and 4096 iterations
H t ith 2 GPU d 4 t VM• Host with 2 GPUs and 4 guest VMs

Motivates new methods for resource management in g
accelerator-based systems – now being completed



Technical Elements - Region and 
Correlation SchedulingCorrelation Scheduling

Min Lee, Vishakha Gupta, Rob Knauerhase

• Targeting Asymmetric Multicore Platforms
• Using Intel quad core and Nehalem server 

architectures
• Region scheduling – dealing with the 

NUCA=>NUMA nature of future manycore 
systems + NUMAFix (Dulloor Rao)systems + NUMAFix (Dulloor Rao)

• Correlation scheduling – dealing with 
asymmetric codes with shared ISAasymmetric codes with shared ISA



Region Scheduling:
C h A S h d li f CMPCache Aware Scheduling for CMPs

A B C D
Current working set

Task A

Over utilized! Less utilized!

A B C D

Bad /

Task B

Task CTask C

Task D

A C B D

Fully utilized Fully utilizedGood ☺

• Issues
W ki i i i i l ( i d h d)– Working set estimation – size, constituent elements (unique and shared)

• Approach
– Runtime ‘region’ determination to capture these working set



Region Scheduling – Basic Idea
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Correlation Scheduling: 
M i t A t i CMapping to Asymmetric Cores

Asymmetry-aware Hypervisor supports asymmetric cores and NUMA memory
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Technical Elements – ‘Islands of Cores’
P i k T bPriyanka Tembey

Dulloor Rao
Mukil Kesavan

Motivation: many-core platforms
• Multiple execution and scheduling contexts: 'islands'Multiple execution and scheduling contexts: islands

• differ in capabilities, micro-architectures
• have NUMA memory characteristicsy

• Inter-connection variants – current platforms
• PCIe, shared caches, fast point-to-point Interconnect 

(QPI/Hypertransport)
• Inter-connects – future platforms

• complex cache structures (!)• complex cache structures (!)
• PGAS memory with integrated memory 

controllers/inter-connects?



Technical Elements – Islands of CoresTechnical Elements Islands of Cores

• InTuneS: Priyanka Tembey
I t h d l i l d li ht i ht t h l– Inter scheduler-island lightweight event channel

– Generic yet expressive definition of inter-island message semantics
– Gray-box scheduler coordination interface 

• scheduler implementation-agnostic APIp g
– Application/VM-scheduler interface for explicit SLA policy enforcement
– Application/VM-monitoring for implicit observation-based policy 

enforcement
– Evaluation with complex scheduler (Linux) and hypervisor schedulerEvaluation with complex scheduler (Linux) and hypervisor scheduler 

(HV in progress), initially using communication accelerator

• Scalable hypervisor structures: Mukil Kesavan and Dulloor Rao
H i t t h ld t h `i l d f ’– Hypervisor structure should match `islands of cores’

– e.g., consider Xen `Dom0’ bundling of functionality
⇒ offer solutions for isolation with bundled functionality
⇒ Find ways to efficiently run many `small’ domains, specialized, each ⇒ d ays to e c e t y u a y s a do a s, spec a ed, eac

with different tasks



Technical Elements – Creating, Optimizing, and Re-
targeting VEUs via Harmony

and Ocelot - Gregory Diamos, Andrew Kerr
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Scalable Portable Execution  – Harmony 
RuntimeRuntime

Future extensions of Harmony 
Current Single Node/MultiCurrent Single Node/Multi--GPU VersionGPU Version

y
functionality will be to operate 
across multiple nodes. Intent:

1 Decision models for remote vs1.Decision models for remote vs. 
local execution
2.Transparent deployment and 
execution of GPU kernels on 
remote GPUs
3.Inclusion of performance 
optimizations, including:

i) speculative kernel executioni) speculative kernel execution,
ii) data movement, and 
iii) memory footprint vs.   
concurrency tradeoffs 



Problem Scaling – Risk Analysis 
ApplicationApplication

Measured 
execution 

times

GPU interaction 
h d

Harmony distributes the work 
across 4 CPU cores, 2 slow 
GPU boards, and 1 fast GPU 
board

overhead 
dominates



Scaling of GPGPU Applications

Average applications can scale 
to 1015 cores, each with 180

element -wide SIMD units

Using the Ocelot CUDA Emulator



Ocelot: 
Dynamic Execution Infrastructure 

NVIDIA Virtual ISA



Emerging Environment

Language Front End Language Front End

DatalogC Front End

StatusStatus: 
• In progress 

Kernel IR

StatusStatus: 
• Moving Forward with Datalog FE 
retarget (LogicBlox Inc.)

p g

Run Time (Harmony)
StatusStatus: 
• Single node/multi-GPU
• being released

Ocelot
g

StatusStatus: StatusStatus:
CUDA JIT LLVM I/F

Emulator
• Released

StatusStatus: 
• In progress (Fall 2009)

Supported ISAs (MIPS, 
SPARC, x86, etc.)



Future Directions
• Why HyVMs: future applications:

– Media-rich web applications
• online `photoshop’ (with HP) 

d i t t i ti ( ith M t l )• dynamic stream customization (with Motorola)
– Financial and HPC codes

• Benchmarks (e.g., Black Scholes – IBM, HPC – NVIDIA, Interactive - Intel)
• Petascale codes (with DOE)

P t l I/O ( ith DOE)• Petascale I/O (with DOE)

• From platforms to clusters to large-scale data centers:
– Distributed execution model for petascale machinesDistributed execution model for petascale machines
– Other execution models: data-intensive (Hadoop, System S, …)

• Future platforms:
– Power/performance tradeoffs and implications
– Memory hierarchies and their effects (on- vs. off-chip)
– Alternative memory models – e.g., PGAS
– Massively parallel HyVMs – e g 1000s of lightweight domains– Massively parallel HyVMs – e.g., 1000s of lightweight domains
– Tool chains: future standards (e.g., OpenCL), compiler research (other 

faculty)



Broader Context
CERCS Research Center

• CERCS – Center for Experimental Research in Computer Systems (www cercs gatech edu)CERCS Center for Experimental Research in Computer Systems (www.cercs.gatech.edu)
– NSF Center
– Member companies include HP, IBM, Intel, and Atlanta companies like Logicblox and ICE, plus 

several others
– ORNL key partners: Steve Poole, Jeff Nichols, Barney Maccabe, Scott Klasky

• Opportunities for large-scale experimentation:
– New award for large-scale hybrid cluster machine: NSF Track II award, Vetter, PI, Schwan and 

Yalamanchili Co-PIs, first machine to be built Winter 2010
• provides additional funding to explore ‘distributed execution environment’ on high end machine and for ‘distributed 

performance emulation of multi-GPU machines’

• Project growth and impact through CERCS efforts and faculty:
– Involving other faculty:

• Santosh Pande – Glimpses - finding accelerator functions in application codes (NSF)
• Hyesoon Kim – Prospector – precise performance (and power) estimation for next generation accelerators (with additional 

support from Intel – Larrabee – NVIDIA  and NSF) – IBM ArchPIC - Valentina Salapura 
• Nate Clark – program analysis (Google)Nate Clark program analysis  (Google)
• Matt Wolf – I/O acceleration for petascale machines (DOE ORNL)

– Working with technology and application partners:
• IBM: financial and HPC apps., focus on system-level esource management
• NVIDIA: student fellowships – Harmony, Ocelot, equipment donations
• Intel: exploring asymmetric architectures
• HP: CUDA-based virtualization, coordinated scheduling, data center and web applications, g, pp
• Logicblox: accelerating Datalog applications used in retail management and insurance risk estimation

– Additional research support:
• NSF Track II award – Oct. 2009
• NSF Modeling and Simulation Award (recommended) October 2009 <integrating Ocelot with QEMU>
• NSF SHF program award – Sept. 2009
• DOE and NSF: I/O for petascale machines, Jan. 2009
• Steve Poole: Power/Performance  tradeoffs
• HP: coordinated scheduling and large-scale data center management, Aug. 2008
• Intel: IA-compatible VMs for heterogeneous many-core systems, since 2007

– Linkage to other projects:
• The Energy Stack



Publications and Resources
Project web page: http://www.cercs.gatech.edu/projects/HyVM/
Recent Publications:
– Priyanka Tembey, Anish Bhatt, Dulloor Rao, Ada Gavrilovska, Karsten Schwan, 

“Fl ibl Cl ifi ti H t M lti A li Pl tf ” ICCCN'08“Flexible Classification on Heterogeneous Multicore Appliance Platforms”, ICCCN'08, 
Aug. 2008

– A. Kerr, G. Diamos, and S. Yalamanchili, "A Characterization and Analysis of PTX 
Kernels," to appear in the 2009 IEEE International Symposium on Workload 
Characterization, October 2009.

– V. Gupta, J. Xenidis, P. Tembey, K. Schwan, A. Gavrilovska, "Cellule: Lighweight 
Execution Environment for Virtualized Accelerators", poster session, 
SuperComputing'09, Nov. 2009.

– G. Diamos and. S. Yalamanchili, "Kernel Level Speculation”, under submission.
– V. Gupta, J. Xenidis, K. Schwan, "Cellule: Lighweight Execution Environment forV. Gupta, J. Xenidis, K. Schwan, Cellule: Lighweight Execution Environment for 

Virtualized CellB.E.", under submission. 
– Min Lee and Karsten Schwan, "Region Scheduling: Virtual Machine Scheduling for 

Next Generation Multicore Platforms", in preparation.
– Vishakha Gupta, Rob Knauerhase, and Karsten Schwan, “Asymmetric Hypervisors”, in 

preparationpreparation.
– Priyanka Tembey, Ada Gavrilovska, and Karsten Schwan, “InTuneS: System 

Abstractions for Coordinated Scheduling”, in preparation.

Software:
– Ocelot, can be obtained at http://code.google.com/p/gpuocelot/, including 

documentation.
– Harmony programming model: 

http://www.ece.gatech.edu/research/labs/casl/harmony/hpdc5hot-diamos.pdf


