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Project Context

Future HPC applications on heterogeneous platforms

e off (e.g., new NSF Track Il machine)-chip and next,
toward on-chip heterogeneous cores

e rich memory hierarchies, e.g., NUMA

New Execution Models
o diverse cores

e custom OS kernels
e |/O support

Accelerators and tool chains
« CUDA, OpenCL, ...
e opportunity for compiler-based optimization methods



Future Applications

Media and image processing:

e for dynamic web content
® ‘Snapfish-like’
Imaging
suite

val

Science and gaming:

e Fusion modeling

e High perf. I/O: GTC, Pixie3D, XGC
e Libraries:
LAPACK, BLAS,
VSIPL, ...

Financial and risk analysis:
e Black Scholes

e Risk Analysis

e Derivatives processing
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Data-intensive and web:
e Critical enterprise codes

e Data mining

e Sensor data processing




Heterogeneous Platforms

« Asymmetries:

— Performance
» Different clock speeds, duty cycles
 Differing issue widths
» Varying cache sizes

— NUMA memory
— Toward ‘islands of cores’

Functional differences:

— Diverse accelerators: heterogeneous:
e Cell, GPU, Communications, Encryption, ...

— Shared ISA: asymmetric:
e Missing SSE version
« Missing floating point
« Additional instructions for acceleration (Larrabee, ...)



HyVM Project Goal

Uniform runtime model for heterogeneous platforms:

Hybrid Virtual Machines

— Uniformity: software-based platform extensions:

 Virtual Execution Unit (VEU): uniform runtime representation for
program executables, targeting heterogeneous cores

 Heterogeneity-awareness: system-level management methods for
improved platform utilization (incl. cache and energy) and application
performance (SLAS)

 Dynamic platform emulation: runtime CK compilation or re-writing
for diverse accelerator targets (via LLVM)

— High performance: diverse executables:

« Commodity and custom VEU ‘containers’: Virtual Machines (VMs)
— processes/threads — commodity cores; Special Execution
Environments (e.g., NVIDIA) - Computational Kernels (CKs) -
accelerators

 Runtime and adaptive {CK} optimization for parallelism

« Standards-compliant CK programming and runtime APIs (OpenCL,
CUDA)

« Compiler-based optimization techniques for {CK}



HyVM Project Elements

Attaining the uniform HyVM execution model

— Leveraging virtualization technologies:
 Virtual Execution Units (VEUS)
— Finer grain schedulable entities than VCPUs
» Specialized execution environments (SEES) for accelerators
— GVIM for efficient GPU virtualization (Niraj Tolia, HP)
— Cellule: Dilma Silva, Jimi Xenides, Hubertus Franke (IBM)

 Montage: dynamic resource management for sets of VEUs (SLA-
awareness, runtime monitoring)

— Coordinated scheduling for accelerators — VMaCS
— InTuneS - system abstractions for coordinated management

— Cache-aware ‘region’ scheduling + correlation scheduling for
shared ISA VEUs — addressing NUMA and asymmetric platforms

» Future hypervisors (using Xen): heterogeneity-aware
— Extended work: scalable hypervisor structures



HyVM Project Elements

— Leveraging evolving industry standards for accelerator APIs
and interactions:

* Tool chain support for CUDA => LLVM/PTX translation, with
future work on OpenCL — Ocelot

» EXxploiting compiler methods to optimize execution regimes
for sets of VEUs — Harmony

 Runtime APIs at CUDA level - GVIM
— Exploring new programming and execution models:
« Datalog to GPU compilation

e Scheduling via on-line performance models and dynamic
code generation for GPU vs. Host ISAs - Ocelot/LLVM

* New analysis tools for debugging and performance tuning via
emulation - Ocelot++
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Spectrum of Exported Heterogeneity
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Hypervisor
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Fault &

------------- w=ooor  Migrate

Ocelot
binary

translation



Virtual Machine/Guest

Applications
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Technical Elements — GVIM and VMaCS
Vishakha Gupta, Niraj Tolia, others

Extending Xen for efficient {CK} execution

A\%
GPU Application
CUDA API |

/Management Domain (DomO)\
Mgmt GPU
Extension Backend

Traditional GPU DriverJ
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Technical Elements — GVIM + VMaCS

Accelerator ready queues Domain request queues
Polling
GPUO Resource | N thread(s)
Management from
GPU1 Logic _l/ Backend
GVIM:
* VEUS on Dom0 VM . VM !
gVCPUs ) | R |
e Management Hypervisor (Xen)
Extensions for General purpose multicores

Coordinated e nnGre o Devicsas

Scheduling



CUDA Execution Time (msec)
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Technical Elements — GVIM
GPU Guest Performance — Baseline Results

Total execution time (without host data assighment)

M Linux
m DomO

M GuestVM

Bitonic (512) Matrix(48x48) MersenneTwister(12000) BlackScholes(30000)

Micro-benchmarks (with dataset values)

Less than 15% slowdown in the worst case
Further improvements made/underway



VMaCS Scheduling Methods - Examples

e Round robin (RR)
— Some guest domain chosen every period
— Poller monitors its queues for the period
— Moves to the next domain

e XenoCredit
— Guest credits assigned at boot time
— Use these credits to calculate proportions
— Poll domains for time proportional to their credits



BlackScholes: XenoCredit vs. Round Robin

» BlackScholes with 60000 options and 4096 iterations
e Host with 2 GPUs and 4 guest VMs

VMs | Credits | Expected | RR XC
[ _tter/ms |
~1T"VMI1 | 512 1.8 2.632 | 1.867 7
VM2 | 256 2.4 2.567 | 3.12
VM3 | 256 22 | 2.804 | 3.213
VM4 | 256 2.54 2.901 | 3.45

Motivates new methods for resource management in
accelerator-based systems — now being completed



Technical Elements - Region and

Correlation Scheduling
Min Lee, Vishakha Gupta, Rob Knauerhase

Targeting Asymmetric Multicore Platforms

Using Intel quad core and Nehalem server
architectures

Region scheduling — dealing with the
NUCA=>NUMA nature of future manycore
systems + NUMAFix (Dulloor Rao)

Correlation scheduling — dealing with
asymmetric codes with shared ISA



Region Scheduling:
Cache Aware Scheduling for CMPs

Current working set
() (&) (o) ()

Task A
Bad ® Over-utilized! Less utilized!
Task B
- (») (e (®)
Task D
N Good © | |Fully utilized Fully utilized
e |ssues
— Working set estimation — size, constituent elements (unique and shared)
 Approach

— Runtime ‘region’ determination to capture these working set



Region Scheduling — Basic Idea

Partition physical memory
Into regions

Schedule regions on
caches

Core can access only the
allowed regions

— System-level enforcement
(using page tables)

Private/Shared regions
— we focus on private regions
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Correlation Scheduling:
Mapping to Asymmetric Cores
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Hypervisor observes behavior,

including fault-and-migrate technigues

Physical cores always execute “most
kindred" task, per policy

Asymmetry-aware Hypervisor supports asymmetric cores and NUMA memory



VCPU Admission Flowchart
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Technical Elements — ‘Islands of Cores

Priyanka Tembey
Dulloor Rao
Mukil Kesavan

Motivation: many-core platforms
e Multiple execution and scheduling contexts: 'islands'

o differ in capabillities, micro-architectures
 have NUMA memory characteristics
* Inter-connection variants — current platforms

 PCle, shared caches, fast point-to-point Interconnect
(QPI/Hypertransport)

* Inter-connects — future platforms
e complex cache structures (!)

« PGAS memory with integrated memory
controllers/inter-connects?



Technical Elements — Islands of Cores

InNTuneS: Priyanka Tembey

Inter scheduler-island lightweight event channel
Generic yet expressive definition of inter-island message semantics
Gray-box scheduler coordination interface
» scheduler implementation-agnostic API
Application/VM-scheduler interface for explicit SLA policy enforcement

Application/VVM-monitoring for implicit observation-based policy
enforcement

Evaluation with complex scheduler (Linux) and hypervisor scheduler
(HV in progress), initially using communication accelerator

Scalable hypervisor structures: Mukil Kesavan and Dulloor Rao

Hypervisor structure should match “islands of cores’
e.g., consider Xen 'Dom0’ bundling of functionality

= offer solutions for isolation with bundled functionality
= Find ways to efficiently run many ‘small’ domains, specialized, each

with different tasks



Technical Elements — Creating, Optimizing, and Re-
targeting VEUs via Harmony
and Ocelot - Gregory Diamos, Andrew Kerr

Memory

Inﬁuts Qutputs InputsOutputs

kernel
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Transparent
scheduling,

execution
management of
chunks

= - ) |

Binary compatible
VEUs across platform

kernel

» Minimize/avoid re-tuning and porting applications as you add
accelerators

m Advanced optimizations
m Speculation, performance prediction, kernel fusion



Scalable Portable Execution — Harmony
Runtime
Current Single Node/Multi-GPU Version

Future extensions of Harmony
functionality will be to operate
across multiple nodes. Intent:

Driver Application

* Notify Asynchronous 5plit Phase API ¢Start
o Harmony Ri{:fﬂ'dme 1.Decision models for remote vs.
= ’ local execution
@i:s:’éf;;:” g Dependencyly Memory || Keme - |fperformance 2. Transparent deployment and
o execution of GPU kernels on
redcor | | Kernel Dispatch remote GPUs
e T P e [ 3.Inclusion of performance
Sptamer | [ Dptimizsr ][ otmizer | [ Optmizer | [ Optimizer ] [ Optmizer optimizations, including:
) speculative kernel execution,
coe1 || corez || coes || coer || corez || cores i) data movement, and
i) memory footprint vs.

Pertormance L Perormance i Pefiormance | Perormance [ Pepomance L} Peormence |- concurrency tradeoffs




GPU interaction
overhead
dominates

Execution time (seconds)

Problem Scaling — Risk Analysis
Application
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Harmony distributes the work
across 4 CPU cores, 2 slow
GPU boards, and 1 fast GPU
board

AMD Phenorm 9550 (C)

9300 GTX (CUDA)

280 GTX (CUDA)

Complete System (Harmony)
1 1

10° 10° 10’

Data Points



Scaling of GPGPU Applications
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Parallelism
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Average applications can scale
to 1015 cores, each with 180
element -wide SIMD units 10t |
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SDK Average

Program Name

Using the Ocelot CUDA Emulator



Ocelot:
Dynamic Execution Infrastructure

PTX Emulation

NVIDIA Virtual ISA x86

PTX Kernel Ocelot - PTX Translator

>

Control flow Dominator
analysis Analysis

Data flow
analysis

IBM Cell, x86 multicore, OpenCL



Emerging Environment

C Front End Datalog
m: EEEEEEEEEEEEEEEEEEEEEEEEESR
Language Front End Language Front End
e In progress

Status:
e Moving Forward with Datalog FE

/ retarget (LogicBlox Inc.)
Kernel IR

, Status:
Run Time (Harmony) « Single node/multi-GPU
* being released
Ocelot
__________ I
|
\ 4 v
Status: v Status:
- Released LLVM I/F « In progress (Fall 2009)
Emulator

Supported ISAs (MIPS,
SPARC, x86, etc.)




Future Directions

Why HyVMs: future applications:

— Media-rich web applications
» online photoshop’ (with HP)
» dynamic stream customization (with Motorola)

— Financial and HPC codes
« Benchmarks (e.qg., Black Scholes — IBM, HPC — NVIDIA, Interactive - Intel)

» Petascale codes (with DOE)
» Petascale I/0 (with DOE)

From platforms to clusters to large-scale data centers:
— Distributed execution model for petascale machines
— Other execution models: data-intensive (Hadoop, System S, ...)

Future platforms:
— Power/performance tradeoffs and implications
— Memory hierarchies and their effects (on- vs. off-chip)
— Alternative memory models — e.g., PGAS
— Massively parallel HyVMs — e.g., 1000s of lightweight domains

— Tool chains: future standards (e.g., OpenCL), compiler research (other
faculty)



alla Broader Context

1oL
Bjcercs CERCS Research Center

e CERCS - Center for Experimental Research in Computer Systems (www.cercs.gatech.edu)
— NSF Center

— Member companies include HP, IBM, Intel, and Atlanta companies like Logicblox and ICE, plus
several others

— ORNL key partners: Steve Poole, Jeff Nichols, Barney Maccabe, Scott Klasky

 Opportunities for large-scale experimentation:

— New award for large-scale hybrid cluster machine: NSF Track Il award, Vetter, Pl, Schwan and
Yalamanchili Co-Pls, first machine to be built Winter 2010

» provides additional funding to explore ‘distributed execution environment’ on high end machine and for ‘distributed
performance emulation of multi-GPU machines’

 Project growth and impact through CERCS efforts and faculty:

— Involving other faculty:
» Santosh Pande — Glimpses - finding accelerator functions in application codes (NSF)

» Hyesoon Kim — Prospector — precise performance (and power) estimation for next generation accelerators (with additional
support from Intel — Larrabee — NVIDIA and NSF) — IBM ArchPIC - Valentina Salapura

* Nate Clark — program analysis (Google)
» Matt Wolf — I/O acceleration for petascale machines (DOE ORNL)

—  Working with technology and application partners:
» IBM: financial and HPC apps., focus on system-level esource management
* NVIDIA: student fellowships — Harmony, Ocelot, equipment donations
» Intel: exploring asymmetric architectures
 HP: CUDA-based virtualization, coordinated scheduling, data center and web applications
» Logicblox: accelerating Datalog applications used in retail management and insurance risk estimation

— Additional research support:

NSF Track Il award — Oct. 2009

NSF Modeling and Simulation Award (recommended) October 2009 <integrating Ocelot with QEMU>
NSF SHF program award — Sept. 2009

DOE and NSF: I/O for petascale machines, Jan. 2009

Steve Poole: Power/Performance tradeoffs

HP: coordinated scheduling and large-scale data center management, Aug. 2008

Intel: IA-compatible VMs for heterogeneous many-core systems, since 2007

— Linkage to other projects:
* The Energy Stack
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s Publications and Resources

Project web page: http://www.cercs.gatech.edu/projects/HyVIM/

Recent Publications:

— Priyanka Tembey, Anish Bhatt, Dulloor Rao, Ada Gavrilovska, Karsten Schwan,
“Flexible Classification on Heterogeneous Multicore Appliance Platforms”, ICCCN'08,
Aug. 2008

— A. Kerr, G. Diamos, and S. Yalamanchili, "A Characterization and Analysis of PTX
Kernels," to appear in the 2009 IEEE International Symposium on Workload
Characterization, October 2009.

— V. Gupta, J. Xenidis, P. Tembey, K. Schwan, A. Gavrilovska, "Cellule: Lighweight
Execution Environment for Virtualized Accelerators"”, poster session,
SuperComputing'09, Nov. 2009.

— G. Diamos and. S. Yalamanchili, "Kernel Level Speculation”, under submission.

— V. Gupta, J. Xenidis, K. Schwan, "Cellule: Lighweight Execution Environment for
Virtualized CellB.E.", under submission.

— Min Lee and Karsten Schwan, "Region Scheduling: Virtual Machine Scheduling for
Next Generation Multicore Platforms”, in preparation.

— Vishakha Gupta, Rob Knauerhase, and Karsten Schwan, “Asymmetric Hypervisors”, in
preparation.

— Priyanka Tembey, Ada Gavrilovska, and Karsten Schwan, “InTuneS: System
Abstractions for Coordinated Scheduling”, in preparation.

Software:

— Ocelot, can be obtained at http://code.google.com/p/gpuocelot/, including
documentation.

— Harmony programming model:
http://www.ece.qatech.edu/research/labs/casl/harmony/hpdc5hot-diamos.pdf




