
Hybrid Streaming/Threading
Having it all (almost), with hybrid and heterogeneous
processors

Mattan Erez

The University of Texas at Austin

2009 Fall Creek Falls Conference
September 25, 2009

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

2-Slide summary (1/2)

• Power is (almost) everything
• Building systems means making tradeoffs
• Tradeoffs are different for different applications (and

phases)
– Some tradeoffs made at design time
– Some tradeoffs made through reconfiguration
– Some tradeoffs made in software

• Don’t call them accelerators
– Heterogeneous architectures and medium-grained control

• Hybrid streaming/threading components
• Programming models

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

2-Slide summary (2/2)

• From 30,000’ architectures not that different from
where “accelerators” are now

• Looking closer, many software-visible changes
– Hybrid programming to the extreme

• More levels of locality
– More namespaces
– Less coherence

• Power is a zero-sum game
– Arithmetic intensity tradeoffs
– Precision/accuracy tradeoffs

• Give hardware what it wants
– Future-proof your code without overspecializing

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Outline

• Power is (almost) everything
– Power isn’t scaling well
– We’re wasting too much power
– Heterogeneity and reconfigurability

• Don’t call them accelerators

• Hybrid streaming/threading

• A note on programming models

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Supercomputer performance outpaces
Moore’s law VLSI scaling

1E+8
1E+9

1E+10
1E+11
1E+12
1E+13
1E+14
1E+15
1E+16
1E+17
1E+18
19

93
19

95
19

97
19

99
20

01
20

03
20

05
20

07
20

09
20

11
20

13
20

15
20

17

Su
st

ai
ne

d
FL

O
P/

s

Num. 1
Num. 10
Num.500
Idealized VLSI

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

1

10

100

1000

10000

100000

1000000

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

20
17

To
ta

l P
ow

er
 [k

W
]

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Power is the Dominant Architectural Problem

• Bad news: power scaling is slowing down
– Can’t scale Vt much in order to control leakage

• New technology helps

– can’t scale Vdd as much
– power doesn’t go down as it used to

• Energy/device decreases slower than devices/chip

• Power goes up if performance scaling continues
– For same processor architecture

• Roadrunner: 1PFLOP/2MW, BG/L 0.5PFLOP/2MW
– How much for many PFLOPS?

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

There’s more to a system than power

• Building systems is about optimizing utility/cost
• Power plays an increasing role

– Power determines much of operating cost
– Power determines much of acquisition cost

• Cooling and facilities

• Reliability
– Likelihood of faults is growing, especially soft errors
– Fault tolerant techniques cost power/performance

• Higher power leads to more failures (soft and hard)
• Bandwidth and compute density

– Fewer components just easier all around

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

How can we reduce power?

• Compute less
– Use better algorithms

• Waste less
– Don’t use unnecessary hardware
– No unnecessary operations
– No unnecessary data movement
– No unnecessary precision

• Specialize more
– Specialized circuits are more efficient

• Minimize power per acceptable performance goal

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Power is a zero-sum game

ALU/FPU
Registers
Caches
Control
NoC
I/O
Reliability
Other

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Reduce and balance power

• Ideally, all power is in arithmetic
• Tradeoff control, compute, storage, communication

– Impossible to get right

– Dense algebra

– Large sparse data

– Building data structures

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

There is no single balanced configuration

• Balance in hardware
– A-priori decide on resource mix?
– Dynamic control and reconfiguration?

• Balance in software
– Re-balance compute/memory tradeoffs towards more

arithmetic-intensive algorithms
– Higher fidelity and fewer timesteps (?)

• Need intimate knowledge of the system
– SW/HW cooperative approach
– SW focuses on principles, system transforms to tradeoff

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Outline

• Power is (almost) everything

• Don’t call them accelerators
– Heterogeneous architectures and medium-grained

control

• Hybrid streaming/threading

• A note on programming models

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Don’t call them accelerators

• “Accelerator” has baggage
– Very fine-grained tasks (e.g., x87) or
– Very coarse-grained tasks (e.g., decoding, graphics, …)

• Either extreme is often inefficient
– High control overhead for fine-grained acceleration
– Extra parallelism and decoupled control to cover “driver

model” overheads
• Medium-grained tasks impact higher-level control

– Who is accelerating who?
– Why not control accelerators for massively-parallel

components?
• Single memory namespace

– Coherence issues for another time

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Heterogeneous processors with hierarchical
control

• Special core for each type of computation?
– Can get out of hand quickly

• Latency-oriented vs. throughput oriented
– Big difference in hardware structures

• What fraction of resources to each?
– This decision probably does need to be mostly static

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Building throughput components

registers

on-chip memoryALUs

interconnectcontrol

• Utilizing parallelism for multiple PEs

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Multiple parallel processing elements

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Data-Level Parallelism

Instruction Sequencer

FPUFPUFPUFPUFPUFPUFPU

FPUFPUFPUFPU

FPUFPUFPUFPU

FPUFPUFPUFPU

• SIMD
• Independent

indexing per FPU
• Full crossbar

between FPUs

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Data- and Instruction-Level Parallelism

• A group of FPUs = A
Processing Element
(PE) = A Cluster

• VLIW
• Hierarchical switch

provides area
efficiency

Instruction Sequencer

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

Instruction Sequencer

FPU

FPU FPU

FPU FPU

FPU FPU

FPU

FPU

FPU FPU

FPUFPU

FPU FPU

FPU

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Data-, Instruction- and Thread-Level

• Sequencer group
– Each instruction

sequencer runs
different kernels

Instruction Sequencer

FPU

FPU FPU

FPU FPU

FPU FPU

FPU

Instruction Sequencer

FPU

FPU FPU

FPU FPU

FPU FPU

FPU

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Heat-map (Area per FPU) – 64 bit

Area overhead of an
instruction
sequencer

Area overhead of an
inter-cluster switch

Area overhead of
intra-cluster
switches

64

128

32

16

4

2

1

8

1 2 4 8 3216 64 128
Number of clusters (DLP)

N
um

be
r o

f F
P

U
s

pe
r c

lu
st

er
 (I

LP
)

1.05
1.1
1.2

1.4

2

4

Many reasonable hardware options for 64-bit

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Outline

• Power is (almost) everything

• Don’t call them accelerators

• Hybrid streaming/threading
– A smooth tradeoff curve for compute, control, and storage

• A note on programming models

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Temporal parallelism – hiding latency

• How do we isolate concurrent work units?
– Threading
– Streaming

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Threading and streaming are duals with
respect to sharing and partitioning state

W0 W1 W2 W3 Wn

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Threading and streaming are duals with
respect to sharing and partitioning state

• Tradeoff in managing state
– Threading: partitioned registers –

the best memory
– Streaming: partition local memory –

problems with dynamic reuse

WU0
WU3
WU6

WU1
WU4
WU7

Shared Cache

To Memory Channel To Memory Channel
WU0in
WU1in

WU63in

WU64in
WU1in

WU127in

WU0out

WU127out

WU1out

SRF

Differences in namespaces SPs can have more
efficient control and memory systems

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

How much parallelism do we need?

• Billions or more independent units of work?

• Locality and control hierarchy are key
– Arithmetic intensity reduces needed parallelism
– Hierarchy makes it all manageable

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Increasing arithmetic intensity

• Different algorithms

• Better use of storage resources
– Caching
– Explicit control?

• More storage per FPU
– Remember, it’s a zero-sum game

• Hybrid approach can span the range

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Dynamic rebalancing

• Turn off FPUs and share storage
– Need to decide when
– Need to hide longer latencies
– Coherence issues
– More and more tradeoffs

• Adapt the control method
– Granularity
– SW / HW managed local memories

• A smooth tradeoff curve for throughput
components
– Streaming / threading hybrid control and memory
– Configurable storage / FPU ratios

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Conifer – a rebalancing hybrid heterogeneous
processor

PE
G

0

General
Purpose

Core

PE
G

1

PE
G

2

PE
G

3

PE
G

4

PE
G

5

PE
G

6

PE
G

7

PE
G

8

General
Purpose

Core

PE
G

9

PE
G

10

PE
G

11

PE
G

12

PE
G

13

PE
G

14

PE
G

15

NI
PE0 PE1 PE2 PE3

PE4 PE5 PE6 PE7
PEG
Mem

PEG
Core

PEG Interconnect

Mem
Chnl

Bulk
G/S

N
I

PE8 PE9 PE10PE11

PE12PE13PE14PE15

PEG Interconnect

PEM

O
R

F
O

R
F

O
R

F
Iter

PE Interconnect

PER0

PER1

PER2

PER3NI

D
e-couple B

uf.

A
ddr. B

uf.
LD/ST

D
e-couple B

uf.

A
ddr. B

uf.

To PEG

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Outline

• Power is (almost) everything

• Don’t call them accelerators

• Hybrid streaming/threading
– A smooth tradeoff curve for compute, control, and storage

• A note on programming models
– Layers
– Expose what’s important in an abstract manner

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Hierarchical programming model view

Physical component layer:
power, bandwidth, performance

Architecture layer:
locality, parallelism, hierarchical control

Portability and tuning layer:
locality, parallelism, hierarchical control

Application layer:
numerical methods, DSLs

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Portability and tuning layer

• Need massive parallelism
– Spatial and temporal

• Locality is critical
– Doesn’t imply streaming or threading

• Hierarchy is key

• Result: predictable operations
– Helps tools and runtime systems
– Better shot at rebalancing power

• Nested bulk synchronous + explicit namespaces
• Atomic regions (or operations)
• Precision/accuracy tradeoffs

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Summary:
What should and shouldn’t not be exposed?

• Should not:
– Inter-node communication

• Hierarchy targets distribution, not directly exposed
• Single global address space within each level

– Explicit synchronization
• Just atomics and barriers

• Should:
– Locality, parallelism, and hierarchical control
– Precision/accuracy

• Word size
• Fault tolerance

– Allow tools to span the rebalancing space

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Do I really need to worry about precision?

• 64-bit is great, but what happens in exascale?

• Much larger reductions and datasets
– Is 64 bit always enough?

• 64-bit computations require much more power
– Power bound architectures need mixed-precision

• It only gets worse, also need to worry about
accuracy

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Do I really need to worry about accuracy?

• Computation and storage are not perfect
– Soft errors momentarily flip bits around
– Hard errors reduce availability

• True for years and the system compensates
– Growing opportunity cost in the reliability mechanisms

• Reliability requires redundancy
– Relative overhead of redundancy is growing

• HW/SW cooperation reduces overhead significantly
– Tolerate errors with software system help
– Flexible accuracy (equivalent to reduced guaranteed

precision)

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Conclusions

• Power is everything
– Bandwidth and performance requirements also

• Locality, parallelism, and hierarchical control
– Good proxy for power, bandwidth, and performance

• Convergence/divergence
– Heterogeneity is already here
– Hybrid threading/streaming with rebalancing

• Layered system/programming model
– Portability and tuning layer is key ☺

• Nested bulk synchronous + atomics
– Predictability helps tools and runtime systems
– Automatically span the hybrid space

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Hierarchical memory and Sequoia

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Hierarchical memory

• Abstract machines as trees of memories

ALUs ALUs

Main memory

Dual-core PC

Similar to:
Parallel Memory Hierarchy Model
(Alpern et al.)

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Hierarchical memory

L2 cache

ALUs ALUs

Main memory

L1 cache L1 cache

Dual-core PC

L2 cache

ALUs

Node
memory

Aggregate cluster memory
(virtual level)

L1 cache

L2 cache

ALUs

Node
memory

L1 cache

L2 cache

ALUs

Node
memory

L1 cache

L2 cache

ALUs

Node
memory

L1 cache

4 node cluster of PCs

• Abstract machines as trees of memories

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Hierarchical memory

Main memory

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

Single Cell blade

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Hierarchical memory

Dual Cell blade

Main memory

(No memory affinity modeled)

ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Hierarchical memory

Cluster of dual Cell blades

LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS

Main memory

Aggregate cluster memory
(virtual level)

LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS

Main memory

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Hierarchical memory

Dual Cell blade

Main memory

(No memory affinity modeled)

ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS

Disk

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Hierarchical memory

GPU memory

ALUs

SM

ALUs

SM

ALUs

SM

ALUs

SM

ALUs

SM

ALUs

SM

ALUs

SM

ALUs

SM

System with a GPU

Main memory

ALUs

SM…
ALUs

SM

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Sequoia tasks

• Single abstraction for
– Isolation / parallelism
– Explicit communication / working sets
– Expressing locality

• Tasks operate on arrays, not array elements

• Tasks nest: they call subtasks

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Sequoia tasks

• Special functions called tasks are the building
blocks of Sequoia programs

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

Read-only parameters M, N, T give sizes
of multidimensional arrays when task is
called.

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Sequoia tasks

• Task arguments and temporaries define a working
set

• Task working set resident at single location in
abstract machine tree

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Task hierarchies
task matmul::inner(in float A[M][T],

in float B[T][N],
inout float C[M][N])

{
tunable int P, Q, R;

Recursively call matmul task on
submatrices

of A, B, and C of size PxQ, QxR, and PxR.

}

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Task hierarchies
task matmul::inner(in float A[M][T],

in float B[T][N],
inout float C[M][N])

{
tunable int P, Q, R;

mappar(int i=0 to M/P,
int j=0 to N/R) {

mapseq(int k=0 to T/Q) {

matmul(A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R]);

}
}

}

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

matmul::inner

matmul::leaf

Variant call graph

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

A B C

Task hierarchies
task matmul::inner(in float A[M][T],

in float B[T][N],
inout float C[M][N])

{
tunable int P, Q, R;

mappar(int i=0 to M/P,
int j=0 to N/R) {

mapseq(int k=0 to T/Q) {

matmul(A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R]);

}
}

}

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

Callee task: matmul::leaf

Calling task: matmul::inner

A B C

Located at level X

Located at level Y

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Task hierarchies
task matmul::inner(in float A[M][T],

in float B[T][N],
inout float C[M][N])

{
tunable int P, Q, R;

mappar(int i=0 to M/P,
int j=0 to N/R) {

mapseq(int k=0 to T/Q) {

matmul(A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R]);

}
}

}

• Tasks express multiple levels of parallelism

NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Explicit SW Management Simplifies Tuning

• Smooth search space
• Performance models can also work

– For Cell, not cluster

	Hybrid Streaming/Threading�Having it all (almost), with hybrid and heterogeneous processors
	2-Slide summary (1/2)
	2-Slide summary (2/2)
	Outline
	Supercomputer performance outpaces Moore’s law VLSI scaling
	Slide Number 6
	Power is the Dominant Architectural Problem
	There’s more to a system than power
	How can we reduce power?
	Power is a zero-sum game
	Reduce and balance power
	There is no single balanced configuration
	Outline
	Don’t call them accelerators
	Heterogeneous processors with hierarchical control
	Building throughput components
	Multiple parallel processing elements
	Data-Level Parallelism
	Data- and Instruction-Level Parallelism
	Data-, Instruction- and Thread-Level
	Heat-map (Area per FPU) – 64 bit
	Outline
	Temporal parallelism – hiding latency
	Threading and streaming are duals with respect to sharing and partitioning state
	Threading and streaming are duals with respect to sharing and partitioning state
	How much parallelism do we need?
	Increasing arithmetic intensity
	Dynamic rebalancing
	Conifer – a rebalancing hybrid heterogeneous processor
	Outline
	Hierarchical programming model view
	Portability and tuning layer
	Summary:�What should and shouldn’t not be exposed?
	Do I really need to worry about precision?
	Do I really need to worry about accuracy?
	Conclusions
	Hierarchical memory and Sequoia
	Hierarchical memory
	Hierarchical memory
	Hierarchical memory
	Hierarchical memory
	Hierarchical memory
	Hierarchical memory
	Hierarchical memory
	Sequoia tasks
	Sequoia tasks
	Sequoia tasks
	Task hierarchies
	Task hierarchies
	Task hierarchies
	Task hierarchies
	Explicit SW Management Simplifies Tuning

