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2-Slide summary (1/2)

• Power is (almost) everything
• Building systems means making tradeoffs
• Tradeoffs are different for different applications (and 

phases)
– Some tradeoffs made at design time
– Some tradeoffs made through reconfiguration
– Some tradeoffs made in software

• Don’t call them accelerators
– Heterogeneous architectures and medium-grained control

• Hybrid streaming/threading components
• Programming models
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2-Slide summary (2/2)

• From 30,000’ architectures not that different from 
where “accelerators” are now

• Looking closer, many software-visible changes
– Hybrid programming to the extreme

• More levels of locality
– More namespaces
– Less coherence

• Power is a zero-sum game
– Arithmetic intensity tradeoffs
– Precision/accuracy tradeoffs

• Give hardware what it wants
– Future-proof your code without overspecializing
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Outline

• Power is (almost) everything
– Power isn’t scaling well
– We’re wasting too much power
– Heterogeneity and reconfigurability

• Don’t call them accelerators

• Hybrid streaming/threading

• A note on programming models
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Supercomputer performance outpaces 
Moore’s law VLSI scaling
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Power is the Dominant Architectural Problem

• Bad news: power scaling is slowing down
– Can’t scale Vt much in order to control leakage

• New technology helps 

– Æ can’t scale Vdd as much
– Æ power doesn’t go down as it used to

• Energy/device decreases slower than devices/chip

• Power goes up if performance scaling continues
– For same processor architecture

• Roadrunner: 1PFLOP/2MW, BG/L 0.5PFLOP/2MW
– How much for many PFLOPS?
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There’s more to a system than power

• Building systems is about optimizing utility/cost
• Power plays an increasing role

– Power determines much of operating cost
– Power determines much of acquisition cost

• Cooling and facilities

• Reliability
– Likelihood of faults is growing, especially soft errors
– Fault tolerant techniques cost power/performance

• Higher power leads to more failures (soft and hard)
• Bandwidth and compute density

– Fewer components just easier all around
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How can we reduce power?

• Compute less
– Use better algorithms

• Waste less
– Don’t use unnecessary hardware
– No unnecessary operations
– No unnecessary data movement
– No unnecessary precision

• Specialize more
– Specialized circuits are more efficient

• Minimize power per acceptable performance goal
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Power is a zero-sum game

ALU/FPU
Registers
Caches
Control
NoC
I/O
Reliability
Other
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Reduce and balance power

• Ideally, all power is in arithmetic
• Tradeoff control, compute, storage, communication

– Impossible to get right

– Dense algebra

– Large sparse data

– Building data structures
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There is no single balanced configuration

• Balance in hardware
– A-priori decide on resource mix?
– Dynamic control and reconfiguration?

• Balance in software
– Re-balance compute/memory tradeoffs towards more 

arithmetic-intensive algorithms
– Higher fidelity and fewer timesteps (?)

• Need intimate knowledge of the system
– SW/HW cooperative approach
– SW focuses on principles, system transforms to tradeoff
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Outline

• Power is (almost) everything

• Don’t call them accelerators
– Heterogeneous architectures and medium-grained 

control

• Hybrid streaming/threading

• A note on programming models
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Don’t call them accelerators

• “Accelerator” has baggage
– Very fine-grained tasks (e.g., x87) or
– Very coarse-grained tasks (e.g., decoding, graphics, …)

• Either extreme is often inefficient
– High control overhead for fine-grained acceleration
– Extra parallelism and decoupled control to cover “driver 

model” overheads
• Medium-grained tasks impact higher-level control

– Who is accelerating who?
– Why not control accelerators for massively-parallel 

components?
• Single memory namespace

– Coherence issues for another time
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Heterogeneous processors with hierarchical 
control

• Special core for each type of computation?
– Can get out of hand quickly

• Latency-oriented vs. throughput oriented
– Big difference in hardware structures

• What fraction of resources to each?
– This decision probably does need to be mostly static
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Building throughput components

registers

on-chip memoryALUs

interconnectcontrol

• Utilizing parallelism for multiple PEs
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Multiple parallel processing elements
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Data-Level Parallelism

Instruction Sequencer

FPUFPUFPUFPUFPUFPUFPU

FPUFPUFPUFPU

FPUFPUFPUFPU

FPUFPUFPUFPU

• SIMD
• Independent 

indexing per FPU
• Full crossbar 

between FPUs
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Data- and Instruction-Level Parallelism

• A group of FPUs = A 
Processing Element 
(PE) =       A Cluster

• VLIW
• Hierarchical switch 

provides area 
efficiency
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Data-, Instruction- and Thread-Level

• Sequencer group
– Each instruction 

sequencer runs 
different kernels

Instruction Sequencer

FPU

FPU FPU
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Heat-map (Area per FPU) – 64 bit

Area overhead of an 
instruction 
sequencer

Area overhead of an 
inter-cluster switch

Area overhead of 
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Outline

• Power is (almost) everything

• Don’t call them accelerators

• Hybrid streaming/threading
– A smooth tradeoff curve for compute, control, and storage

• A note on programming models
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Temporal parallelism – hiding latency

• How do we isolate concurrent work units?
– Threading
– Streaming
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Threading and streaming are duals with 
respect to sharing and partitioning state

W0 W1 W2 W3                              Wn
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Threading and streaming are duals with 
respect to sharing and partitioning state

• Tradeoff in managing state
– Threading: partitioned registers – 

the best memory
– Streaming: partition local memory – 

problems with dynamic reuse

WU0
WU3
WU6

WU1
WU4
WU7

Shared Cache

To Memory    Channel To Memory    Channel
WU0in
WU1in

WU63in

WU64in
WU1in

WU127in

WU0out

WU127out

WU1out

SRF

Differences in namespaces Æ SPs can have more 
efficient control and memory systems



NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

How much parallelism do we need?

• Billions or more independent units of work?

• Locality and control hierarchy are key
– Arithmetic intensity reduces needed parallelism
– Hierarchy makes it all manageable
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Increasing arithmetic intensity

• Different algorithms

• Better use of storage resources
– Caching
– Explicit control?

• More storage per FPU
– Remember, it’s a zero-sum game

• Hybrid approach can span the range
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Dynamic rebalancing

• Turn off FPUs and share storage
– Need to decide when
– Need to hide longer latencies
– Coherence issues
– More and more tradeoffs

• Adapt the control method 
– Granularity
– SW / HW managed local memories

• A smooth tradeoff curve for throughput 
components
– Streaming / threading hybrid control and memory 
– Configurable storage / FPU ratios
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Conifer – a rebalancing hybrid heterogeneous 
processor
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Outline

• Power is (almost) everything

• Don’t call them accelerators

• Hybrid streaming/threading
– A smooth tradeoff curve for compute, control, and storage

• A note on programming models
– Layers
– Expose what’s important in an abstract manner
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Hierarchical programming model view

Physical component layer: 
power, bandwidth, performance

Architecture layer: 
locality, parallelism, hierarchical control

Portability and tuning layer: 
locality, parallelism, hierarchical control

Application layer: 
numerical methods, DSLs
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Portability and tuning layer

• Need massive parallelism
– Spatial and temporal

• Locality is critical
– Doesn’t imply streaming or threading

• Hierarchy is key

• Result: predictable operations
– Helps tools and runtime systems
– Better shot at rebalancing power

• Nested bulk synchronous + explicit namespaces
• Atomic regions (or operations)
• Precision/accuracy tradeoffs
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Summary: 
What should and shouldn’t not be exposed?

• Should not:
– Inter-node communication

• Hierarchy targets distribution, not directly exposed
• Single global address space within each level

– Explicit synchronization
• Just atomics and barriers

• Should:
– Locality, parallelism, and hierarchical control
– Precision/accuracy

• Word size
• Fault tolerance

– Allow tools to span the rebalancing space
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Do I really need to worry about precision?

• 64-bit is great, but what happens in exascale?

• Much larger reductions and datasets 
– Is 64 bit always enough?

• 64-bit computations require much more power
– Power bound architectures need mixed-precision

• It only gets worse, also need to worry about 
accuracy
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Do I really need to worry about accuracy?

• Computation and storage are not perfect
– Soft errors momentarily flip bits around
– Hard errors reduce availability

• True for years and the system compensates
– Growing opportunity cost in the reliability mechanisms

• Reliability requires redundancy
– Relative overhead of redundancy is growing

• HW/SW cooperation reduces overhead significantly
– Tolerate errors with software system help
– Flexible accuracy (equivalent to reduced guaranteed 

precision)
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Conclusions

• Power is everything
– Bandwidth and performance requirements also

• Locality, parallelism, and hierarchical control
– Good proxy for power, bandwidth, and performance

• Convergence/divergence
– Heterogeneity is already here
– Hybrid threading/streaming with rebalancing

• Layered system/programming model
– Portability and tuning layer is key ☺

• Nested bulk synchronous + atomics
– Predictability helps tools and runtime systems
– Automatically span the hybrid space
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Hierarchical memory and Sequoia
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Hierarchical memory

• Abstract machines as trees of memories

ALUs ALUs

Main memory

Dual-core PC

Similar to:
Parallel Memory Hierarchy Model 
(Alpern et al.)
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Hierarchical memory

L2 cache

ALUs ALUs

Main memory

L1 cache L1 cache

Dual-core PC

L2 cache

ALUs

Node
memory

Aggregate cluster memory
(virtual level)

L1 cache

L2 cache

ALUs

Node
memory

L1 cache

L2 cache

ALUs

Node
memory

L1 cache

L2 cache

ALUs

Node
memory

L1 cache

4 node cluster of PCs

• Abstract machines as trees of memories
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Hierarchical memory

Main memory
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Single Cell blade
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Hierarchical memory

Dual Cell blade

Main memory

(No memory affinity modeled)
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Hierarchical memory

Cluster of dual Cell blades

LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS

Main memory

Aggregate cluster memory
(virtual level)

LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS

Main memory
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Hierarchical memory
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Hierarchical memory

GPU memory

ALUs

SM

ALUs

SM

ALUs

SM

ALUs
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Sequoia tasks

• Single abstraction for
– Isolation / parallelism
– Explicit communication / working sets
– Expressing locality

• Tasks operate on arrays, not array elements

• Tasks nest:  they call subtasks
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Sequoia tasks

• Special functions called tasks are the building 
blocks of Sequoia programs

task matmul::leaf( in    float A[M][T],
in    float B[T][N],
inout float C[M][N]  )

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

Read-only parameters M, N, T give sizes 
of multidimensional arrays when task is 
called.
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Sequoia tasks

• Task arguments and temporaries define a working 
set

• Task working set resident at single location in 
abstract machine tree

task matmul::leaf( in    float A[M][T],
in    float B[T][N],
inout float C[M][N] )

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}
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Task hierarchies
task matmul::inner( in    float A[M][T],

in    float B[T][N],
inout float C[M][N] )

{
tunable int P, Q, R;

Recursively call matmul task on 
submatrices

of A, B, and C of size PxQ, QxR, and PxR.

}

task matmul::leaf( in    float A[M][T],
in    float B[T][N],
inout float C[M][N]  )

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}
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Task hierarchies
task matmul::inner( in    float A[M][T],

in    float B[T][N],
inout float C[M][N] )

{
tunable int P, Q, R;

mappar( int i=0 to M/P,
int j=0 to N/R ) {

mapseq( int k=0 to T/Q ) {

matmul( A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R] );

}
}

}

task matmul::leaf( in    float A[M][T],
in    float B[T][N],
inout float C[M][N]  )

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

matmul::inner

matmul::leaf

Variant call graph
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A B C

Task hierarchies
task matmul::inner( in    float A[M][T],

in    float B[T][N],
inout float C[M][N] )

{
tunable int P, Q, R;

mappar( int i=0 to M/P,
int j=0 to N/R ) {

mapseq( int k=0 to T/Q ) {

matmul( A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R] );

}
}

}

task matmul::leaf( in    float A[M][T],
in    float B[T][N],
inout float C[M][N]  )

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

Callee task:  matmul::leaf

Calling task:  matmul::inner

A B C

Located at level X

Located at level Y



NNN

FCFC’09, Hardware Acceleration © 2009 Mattan Erez

Task hierarchies
task matmul::inner( in    float A[M][T],

in    float B[T][N],
inout float C[M][N] )

{
tunable int P, Q, R;

mappar( int i=0 to M/P,
int j=0 to N/R ) {

mapseq( int k=0 to T/Q ) {

matmul( A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R] );

}
}

}

• Tasks express multiple levels of parallelism
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Explicit SW Management Simplifies Tuning

• Smooth search space
• Performance models can also work

– For Cell, not cluster
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