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Background and Objectives

e Increasing emlo_hasis on Feedstocks (DOE/OBP,
“Biomass: Multi-Year Program Plan,” March 2008) leads

to significant land use changes in US and other
countries

— EXxisting programs are not sufficient for biomass monitoring and
characterizing changes

e Develop a spatiotemporal data mining framework for:

— Continuous monitoring of biomass using coarse resolution
spatiotemporal data (Change/No Change

e Reduce false positives by integrating radiometric observations with
climate variables (e.g., temperature, rainfall), agricultural statistics

(USDA-NASS)

— Finer biomass information extraction using multispectral data
(Characterize Changes)

e Extract crop type and condition information from fine spectral and

spatial resolution imag{_es guided b hi%h-tempor_al but coarse
spatial/spectral resolution images {MO IS -> AWIFS -> NAIP)

e Scale these algorithms for large geographic regions
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Overall Architecture

Biomass Monitoring

MODIS (250m, 2b, 1d)

*Coarse-spatial resolution (S_—
*High-temporal resolution

Change Vs.
No Change

*Good for regional, global
monitoring, but not ideal for
crop identification

Aggregate Class
(Agriculture)

Fine-resolution Information Extraction

v

AWIFS (56 m, 4B, 5d)

A 4

v NAIP (1m, 4b, 1y) :
A *Moderate-to-High spatial |_| Characterize
I\ *Moderate temporal Changes

p \ *Used for crop type and
) condition extraction
Fine (Sub-)Classes| *H!gh training and

R computational
' . o (Corn, Soy, Wheat)| \equirements
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Biomass Monitoring Framework

MODIS (4800x4800)
3 Bands, 250m, 8-days
2000-2009

H11V04, MOD09Q1

(LP DACC)
27GB; 432 products
0‘5
0“

AWIFS
(12,300x12,00t
4 Bands, 56m
May-Sept. 200
lowa, (USDA)
130 Products

ISIN Projection

Image &

Ancillary Data

Pre-processing
*Reprojection

UTM Projection

5 10 . 1
Filter Each Pixel

*Atmospheric
*Filtering
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Change Detection
*Time Series Based
*Time Series Prediction
*Multidimensional Image Based
*Unsupervised Clustering

A 4

Characterize
Changes
*Phenology-based
*Type-based




Change Detection [4]

e Unsupervised
e Simple differencing: Change Vector Analysis [1]

e Significance and Hypothesis Tests [2]

e Supervised

e Several Classification Techniques
e Time-series [3]
e AR, MA, ARIMA

[1] L. Bruzzone and D. F. Prieto, “An adaptive semiparametric and context-based approach to unsupervised change detection in
multitemporal remote-sensing images,” IEEE Trans. Image Processing,, Apr. 2002.

[2] T. Aach and A. Kaup, Bayesian algorithms for adaptive change detection in image sequences using Markov random fields,“Signal
Processing. vol. 7, pp. 147-160, Aug. 1995.

[3] Z. Jain, Y. Chau. “Optimum multisensor data fusion for image change detection,” IEEE Trans. Syst., Man, Cybern., vol. 25 1995.
[4] R. J. Radke, S. Andra. “Image Change Detection Algorithms: A systematic survey.” IEEE TRANSACTIONS ON IMAGE
PROCESSING, VOL. 14, NO. 3, MARCH 2005
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Time Series Based Change

Detection

Basic algorithm

e Learn from past _
observations, that is, build
a model that fits to all
previous observations
(NDVI time series)

e Using the model

— Predict NDVI at next
time step

e Determine if thereis a
change

— Compare predicted
value with observed
(current NDVI image)
value

— If the difference is within
a threshold, no change,
else “possible change”

e Challenges

— Which model

— What is the appropriate
threshold PRTOP
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Multidimensional Image Based
Change Detection

e Each band (feature) is one temporal (NDVI) image

e Each image Is either a single band (one time
period), one year (all time periods), or only a
growing season (e.g., May — Sept.)

e Detect changes between two images

e Useful in detecting changes
— Between time intervals (not necessarily consecutive)

— Between seasons

e We developed a new unsupervised clustering
based change detection technique
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Basic Algorithm

GMM
(T1)

Cluster

B oo

(T2)

—  MLE

A 4

Labels
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Clustering - General Principles

Pre- Feature _| | Clustering |,| Validation,
Processing | | Selection| |Algorithm | |Interpretation

A

. Pre-processing — standardization of variables,
outliers removal, ...

. Which features are best? el

: |
- Find smallest feature subset that best uncovers
“Interesting natural” groupings from data
according to a chosen criterion

. Clustering Algorithm
- K-Means, X-Means, G-Means, ...

- Check for correctness and assign meaning to
the clusters
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Clustering - Example - K-Means

. see ‘:.%
K-Means is an
iterative
72' g algorithm
S pee Sugge, eStart with k-
F:' .)-<, random prototypes

(centroids)

*Assign data points
to the nearest
prototype

Compute new K-
prototypes
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Clustering - Example - K-Means

. Relatively efficient O(nki), where n = #objs, k
= #Hclusters, | = #iterations.

. How many clusters?

- Try different k, see how avg. dist to centroid
changes as k increases

- Avg. decreases rapidly till you reach right K, then
stabilizes.

S e

ek, ek,
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Clustering - Example - K-Means

. Type of clusters

— Circular
K- Means

- Remote sensing .
-~ Multivariate Normal Distribution
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Clustering Model Parameter Estimation

EM to estimate GMM parameters

1/2exp{ (X 3 )T i_jl,k(xi _ﬂ;)}
- eXp{_z(Xi _/AJ:()T i|_l'k(xi _/lek)}
e M-Step N
o. = Zizleij ,Zlk+1 ZI 1elj [
i ’ J
N zizleij

) k+1 1 U (X B ,\k+1) (X B Ak+1)
I
and X i
Zizleij

Problem — How many clusters?

e E-Step

Fa

zk

2

it"data vector, jt" class
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Clustering: G-Means and X-Means

Local EIC Scoring

Dzcide whether to keep the split or not

L
|
|
|
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X-Means

G-Means
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Imitations

Binary Splits -- L

Cluster Distributions

Cluster Distributions

Cluster Distributions

o8 08 oF 0T

100

60

40

20

100

a0

40

20

100

&

60

40

20

1

X

eration 2 %

1

Iteration 1, Sphir 1

X1
Criginal Cluster Distribations

pit 1

Cluster Distributions

Cluster Distributions

Cluster Distributions

oz

0g og oF oz
X
.
A ! b
aat I
. 2 .
. .-“odo"'“l- A(
- Rl 13 “.
W A'Nm. <t
i ;!.d.-. * !
.lae LN i.-._u
. _ " -
- - 0
! 10.4%4 -.‘.l“..r.-,x
ke ad ]
"t .ﬁ$ o ug
g wa ey, » —Jl
!ﬁ.&.. 0 7 n"
b/ .3.' T ‘
hl -
R\ ST
o
LA
-
*
T T T
03 09 0¥ 0z
Ix

00

80

60

40

100

&0

60

40

i}

100

a0

G0

40

X1

aration 3 Split 1

X1
Final Cliters

Final Cluters (After Merging)

16 Managed by UT-Battelle

for the Department of Energy



How Many Clusters?

Method Total GMM
e Model Selection Criteria — AIC/BIC/MDL/MML ... Clusters
e Our Approach: GX-Means Model-based | 7 2
X-Means 6 4
G-Means 19 5
Adaptive-G- 14 9
Means

Carleton (Landsat ETM+) Image
Clustering Results

Model-based | 31 14

X-Means 22 15

G-Means 36 12

Adaptive-G- 27 26

Means
ichEtfnrpajI—wiscI{L—Divcrgcncc N o0 _ _ : & | Jasper Ridge (AVIRIS) Image
| Merge if two clusters are close k. r Z | Clustering Results
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Characterize changes

Two possible approaches
1st Case
Phenological changes
2nd Case

Acquire high-resolution images (before
and after dates)

Do detailed classification

Determine which class is converted Into
which other class

Wheat -> Corn
Wheat got damaged
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mu

1st Case: Phenological Changes

What is phenology?

Study of cyclic events of nature

Vegetation communities have
seasonally driven phenologies

Onset, Peak, and End of
growing seasons

Peak

Basic Algorithm:
For each change polygon

Compute mean spectral
profile on filtered time
series extracted from

200
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Length of growm(

/Season

[
1

Dormancy °

Onselt

change polygons

Determine onset, peak,
and offset points in each of
T1, T2 images

Make comparison between
time of occurrence of
these points

Early onset
Changes in length of

5 10

1:23
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2"d Case: Type (class) Based
Change Characterization

e Fine resolution (type) information extraction
from before and after event images

—A Is converted to B (e.g., Wheat -> Corn)
—A became A’ (may be due to damage)

e Challenges
— Insufficient ground truth
— Large spatial extents

e \We developed two novel solutions
—Semi-supervised Learning
— Sub-class classification

20 Managed by UT-Battelle ) ) o
for the Department of Energy Biomass_ SSTDM_LDRD Business Sensitive



Classification with limited ground truth

e #Hof training samples — (10 to 100) * (number of dimensions)
— Costly — $500-$800 per plot (depends on geographic area)

— Accessibility — Private/Privacy issues (e.g., USFS may
average 5% denied access)

— Real-time — Emergency situations, such as, forest fires,
floods

e Increase number of samples

— By incorporating unlabeled samples
e Naive semi-supervised (Nigam et al. [JML-2000])
— Bagging [Breiman, ML-96]

e Reduce number of dimensions
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Tllustration of "Informed Semi-
supervised” Learning
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Class Distributions
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Class Distributions
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Class Distributions
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Class Distributions
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GMM Clustering Results

Class Distributions

Class Distributions
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Sub-class Classification - Algorithm

Each Class is Unimodal Gaussian

MLE

A4

Each Aggregate Class is GMM

How many|components?

BIC/AIC Model Selection
+ Parameter Estimation

What are these [components?

Few labels/ Unlabeled
sub-class Samples

v

Semi-supervised Sub-class Classification
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Results: Sub-class Classification

G. Truth 1 2 3 4 | P Acc.
Forest(1) | 1475.00 9.00 28.00 0.00 | 97.55 BIC Values D Dueary o Tt (Sca-2man
Agriculture(2) 90.00 142.00 2.00 0.00 60.68 ¥ —
Urban(3) 0.00 000 4500 0.00 | 100.00 £ . / -
Wetlands(4) 18.00 0.00 2.00 34.00 62.96 . J
Users Acc. | 93.18 9404 5844 100.00 | 91.92 -1 /
g
Table 10. Accuracy (Aggregate : /‘
Classes) o
GT 1 2 3 4 | P Acc. e
Forest(1) | 1448.00 13.00 51.00 0.00 | 95.77 (a) BIC Values (b) Bivariate Density Plots
Ag.(2) 14.00 214.00 6.00 0.00 91.45
Wet.(4) 3.00 0.00 13.00 38.00 70.37
U. Acc. 08.84 04,27  39.13 100.00 94,58
Dataset:
LandSat ETM+ Data (Cloquet, Carleton, MN, May GT HW CE  L/Wet P Acc
31, 2000) HW 64200 1400 10.00 96.40
'IG Sa”dsa“ C'ass‘zs’ 692%?3' CF 900 24500  7.00 93.87
*Independent test data: 205 plots L/Wet 1100  2.00 383.00 96.72

*Forest (4 Subclasses; 2 subclasses are
combined into 1

*2 Labeled plots per sub-class Table 13. SSL Accuracy (Forest Sub-
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Spatial Semi-supervised

W, e

BC (60%)
BC-MRF (65%)
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Conclusions and Future Directions

e LULC is still a challenging task
e SSTDM approaches shows great promise

e Biomass changes can be monitored at regional and
global scales

e Need techniques for analyzing multisource data

e Remote Sensing

e Ground sensor observations (Aeronet, Fluxnet)
e Climate Simulations

e Computational challenges need to be addressed
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