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Background

Extreme Scale Computational Nanoscience and Engineering 
for Exploring and Optimizing Energy Storage and Conversion 

Theory and modeling for Energy Storage Materials

Efficient, flexible, and safe electrical energy torage technology is one of the 
fundamental elements to reducing our dependency on fossil fuels and 
diversifying our energy sources. Electrochemical energy storage devices 
(batteries and supercapacitors) are the leading candidates for meeting our 
current and future electrical energy storage needs. Both types of 
electrochemical energy storage devices critically need improved 
quantitative understanding of the underlying electrochemical processes in 
order to enhance their performance..

Improved capability for energy conversion are also desperately needed. In 
particular with respect to our current ability to “harvest” energy from the 
sun (solar fuels or solar photovoltaics).

Theory, modeling, and simulation of materials provides 
essential information to enable fundamental understanding of 
the role of pore size, shape, and self-assembly in energy storage
and conversion processes.

Size and Time Scale

Exascale computing can be a critical part of enabling accurate and 
efficient simulation for energy science
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Helmholtz and post-Helmholtz models
EDLC

C = εrε0A/d (1a)

C/A = εrε0/d (1b)

EDCC

C = 2πεrε0L / ln(b/a)         (2a)         

C/A = εrε0/{bln[b/(b-d)]}    (2b)

EWCC

C/A = εrε0/[bln(b/a0)]        (3)

xEDSC

C = 4πεrε0ab/(b-a)              (4a)          

C/A = εrε0(a+d)/ad              (4b)

xEDCC

C/A = εrε0/{aln[(a+d)/a]}      (5)

The traditional Helmholtz model 
has been used for decades. New 
materials call for new post-
Helmholtz models.

Atomistic simulations
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The distribution of K+ in electrified slit-shaped micropores was studied using 
MD simulations. For pore widths b/w 10 and 14.7 Å, fully hydrated ions 
accumulate in the central plane of the pores as a result of ion hydration and 
water-water interactions.

Endohedral capacitors

EWCC
EDCC
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CNTs, 1.96 M 
triethylmethylammonium
tetrafluoroborate in 
propylene carbonate
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The traditional Helmholtz model has 
been used for decades. New materials 
call for new post-Helmholtz models.

How can we control long-range 
supramolecular ordering?

• Epitaxially confined arrays of conjugated polymeric 
materials

• Processing using controlled annealing, compatibilizers, 
substrate

• Alternative organic systems such as crystalline organic 
nanowires

• Nano-bio systems, hybrid composites 
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