Repeating Our
Mistakes? Software
Engineering for HPC

David E. Bernholdt

Oak Ridge National Laboratory
bernholdtde@ornl.gov

Eﬁ"EmRE&oFY ¥ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMEMNT COF ENERGY

25-27 October 2010 Fall Creek Falls Conference 1

Observations on the Sociology of
Computational Science

* Most computational scientists learn computing from

mentors and peers within their disciplines
— Little or no formal training in computer science
— Informal “self-study” of computer science is spotty

* Reward structure favors communicating scientific results

— Not the software that enabled the science

* Worse: the software gives competitive
advantage!

— Even less the engineering that
enabled the software

* Silos of excellence from a domain

perspective

— Horizontal knowledge transter diffusion .
IS much slower

25-27 October 2010 Fall Creek Falls Conference

Observations on Software Engineering
In Computational Science

« Many think software engineering technigues aren't
applicable to research (software)

Many think their code is small and simple, and doesn't
need “fancy” engineering

Many researchers have a short term perspective on their

software
— Probably commensurate with reward system
— Software engineering is often a long-term investment — up-front
costs for often nebulous future payoffs

Many see software engineering as something that takes
time and effort away from scientific progress

25-27 October 2010 Fall Creek Falls Conference

Is Software Engineering
Really So Bad?

o Software engineering is ... dedicated to designing,
Implementing, and modifying software so that it is of
higher quality, more affordable, maintainable, and

faster to build.
— Wikipedia [emphasis mine]

* The application of a systematic, disciplined,
guantifiable approach to the development, operation,
and maintenance of software; that is, the application of

engineering to software.

— Guide to the Software Engineering Body of Knowledge, IEEE
2001 [emphasis mine]

25-27 October 2010 Fall Creek Falls Conference

Why the Disconnect?

* Lack of understanding of software L R R L LS T——
engineering by computational scientists)
_ _ Understanding
» Lack of understanding of computational the High-Performance-
science by software engineers Computing Gommunity:
A Software Engineer’s Perspective
« Software engineering for the wrong reasons A S
* The wrong software engineering techniques ket
» Software engineering has matured l'_-

significantly e
enginsering Fssves
Attampts to transfor

* Those who cannot remember the past are

condemned to repeat it.
— George Santayana

Background
Al of the SO0 fasiest supercon

And Can We Recover From It?

25-27 October 2010 Fall Creek Falls Conference 5

What Can Software Engineering Do
For Computational Science?

Who’s Doing It Better?

|s Research Needed in SE for HPC and
Computational Science?

25-27 October 2010 Fall Creek Falls Conference

Configure & Build 1s Hard!
But That Doesn’t Mean We

Can’t Do Better (If We Try)!

Deb Creator OpenMake Meister
Apache Maven Debian Package Maker OMake

make Apache Buildr
Autoconf

Ch =] ke

Sc freshmeat

ilder.org
[
S Juild

Aegis Updated 09 War 2008 Tags

Build Tools (510)

Software Develo.. (502) I(e r
Libraries (83)

Code Generators (52)

pew Project About Blog Help

510 projects tagged "Build Tools"

r Aegis is a transaction-based software configuration management system. It provides a framework
within which a team of developers may work on many changes to a program independently, and
Aegis coardinates integrating these changes back into the master source of the program, with as

-~

n IT little cisruption as possible. Aegis supports geographically distributed development = e 511 >
3 GPFL Sofware Development Testing Build Tools Wersion Control Vit 1939
i Licenses 3 . Id
(AMC (ATOM Module Compiler) Updated 25 Jul 2001 GPL (200} u I
LGPL (48
AMC is & programmaile compiler/oreprocessor. it has a built-in programming language called CGL B=D Revised (31)
M PW (Code Generation Language) that lets you add new syntactical elements to the source files that Apache 20 (29) f
AMC processes. In addition, AMC has a module structure reminescent of the UCSD p-System MITE [27)
compiler. AMC comes with a default package that acdds a dynamic form of OOP to C. - e
op
A ntr 0 coftware Development Code Generators Build Tools Compilers e 20 .
Programming languages
Java (167)
Apache Toolbox Updated 07 Oct 2004 L)
Lot (B0

25-27 October 2010

Apache Toolbox provides a means to easily compile Apache (IPv4/6) S5L, PHP(v3/4), MySQaL,

Fall Creek Falls Conference

Pythan (52)

#ENEAMS

NUCLEAR ENERGY ADVANCED MODELING & SIMULATION PROGRAM

Five Year Study -
Complexity and Defects in R&D Codes

= Cyclomatic Complexity and Number of Defects Found
700 —
600
» Code complexity| § *° |
correlates 400 —— . Hardly Used

mm Defects Found

strongly with 300
actual defects,
static analyzer

iIssues

s Complexity >=10
200 -8

u Static Analyzer

100 ——Poly. (Defects Found)

Poly. (Complexity == 10)

0 -+

MNumber of Defects and Number of Complex Components

MHD
Particles

Burn
Multiphase

Time Constraints
Solvers
Profiling |f

Chemistry
Feature Coverage

Material Mo dels
Mesh Generation
Input Parsing
Restart File
Advection

Slide Surfaces
Implicit Hydro
Incompressible Flow
Shape Generation
CompFlow

Software Components

Courtesy of Greg Pope (LLNL)

25-27 October 2010 Fall Creek Falls Conference 8

HEHENEAMS

NUCLEAR ENERGY ADVANCED MODELING & SIMULATION PROGRAM

0000000000
Techniques for Detecting and
Preventing Bad Code
Prevention Techniques Detection Techniques
30 ¢ 30 3"
25 25 +
20 20 - V
15 A 15 -
v I Yy Yyby —
5 - s _ B _ 0000
. _ SIFFE NS EEEE NN NN _
H Prevention 28§ o 2 W ww w '8 W oW ow W w g- o H Detection
& F L S & & o7 SECEE2s e SE SRR L
Q/b?“ &Q,Q e;_)\‘?o ro) @'bo «Kr&u '\{z, ’@(‘) OQQ’ & E ‘8’ 2 E '8 e 5 £ £ = '% e g .g
S VIS F L 58 £35S 2c5§eF s
S C X E P o £ S®E3® 2mECEAT
.Q}"‘Q‘ @\ﬁ 0\.}\@ vo'z"@@ o o Dgam) = é’
0\0\ (Joé\ q@/o‘ vb'bo‘ g A E
* Requirements review « Code inspections
* Design review Static analysis
e OO programming * Usabillity testing
« Coding standards * Functional testing
« Configuration management Algorithm, platform, regression,

negative testing
Courtesy of Greg Pope (LLNL)

25-27 October 2010 Fall Creek Falls Conference 9

Development Processes

Heguiremen i3

* The software engineering

community has gotten a lot more)
sophisticated about development H

processes e

« Common in industry to have

distributed teams developing Classic “Waterfall” Development Process
large, complex software systems

with changing requirements Some current processes:

« SCRUM, Agile, XP, Kanban,

e Active area of research TDD, FDD, RUP, ...
— Software, people, management

)

= |

* New approaches often over-hyped

25-27 October 2010 Fall Creek Falls Conference 10

NUCLEAR ENERGY ADVANCED MODELING & SIMULATION PROGRAM

Agile Model Driven Design (AMDD)

Phases
Inception Elaboration Construction Transition
. . . Model | —=eenmnT{I0 00N e
e Combination of Agile & plementation
Rational Unified Process eployment
« Model driven (UML, not O refect Management | —asmam)
M&S) Environment -
» Incorporates Test-Driven o e eretions
Development -
e Development is iterative
- Releases at the end of each ~ : =
iteration e
 Delivers functionality 52
Incrementa”y’ WhICh aIIOWS Rem:’i::gﬂwum Trann Ao Fazrn Traarn aaro

requirements to change Burndown chart for July 2010 iteration

Courtesy of Jay Billings (ORNL)

25-27 October 2010 Fall Creek Falls Conference 11

* Atool for assessing
and communicating
progress in predict-
Ive capability

— Help organize and
systematize VV &

UuQ
« PCMM components:
M&S elements
— Maturity levels
— Assessment
criteria
* It is application
specific

m

EEEEEE
L]

] EEEER
5N EEEEEER

NEAMS

NUCLEAR ENERGY ADVANCED MODELING & SIMULATION PROGRAM

Predictive Capability Maturity Model
(for Computational M&S)

MATURITY

ELEMENT

Maturity Level 0
Low Consequence,
Minlmal M&S Impact,
e.g. Scoping Studles

Maturity Level 1
Moderate Consequence,
Some M&S Impact,
e.g. Design Support

Maturity Level 2
High-Consequence,
High M&S Impact,
e.g. Quallflcatlon Support

Maturity Level 3
High-Consequence,
Declslon-Making Based on M&S,
e.g. Quallfication or Certlflcation

Representation and

Geometric Fidelity

What features are neglected

because of simplifications or
stylizatlons?

+ Judgment only
+ Little or no

representational or
geometric fidelity for
the system and BCs

Significant simplification
or stylization of the
system and BCs
Geometry or
representation of major
components is defined

0

0

Limited simplification or stylization of
major components and BCs
Geometry or representation is well
defined for major components and
some minor components

Some peer review conducted

Essentially no simplification or stylization
of components in the system and BCs
Geometry or representation of all
components is at the detail of “as built”,
e.g.. gaps, material interfaces, fasteners
Independent peer review conducted

Physics and Material
Model Fidelity

How fundamental are the physlcs
and materlal models and what |s
the level of model callbration?

)

.

Judgment only

Model forms are either
unknown or fully
empirical

Few, if any, physics-
informed models

No coupling of models

Some models are
physics based and are
calibrated using data
from related systems
Minimal or ad hoc
coupling of models

0

0

Physics-based models for all
important processes

Significant calibration needed using
separate effects tests (SETs) and
integral effects tests (IETs)
One-way coupling of models

Some peer review conducted

All models are physics based

Minimal need for calibration using SETs
and IETs

Sound physical basis for extrapolation
and coupling of models

Full, two-way coupling of models
Independent peer review conducted

Code Verification
Are algotithm deflclencles,
software errors, and poor SQE
practices corrupting the
simulation results?

+ Judgment only

.

Minimal testing of any
software elements
Little or no SQE
procedures specified
or followed

Code is managed by
SQE procedures

Unit and regression
testing conducted
Some comparisons
made with benchmarks

Some algonthms are tested to
determine the observed order of
numerical convergence

Some features & capabilities (F&C)
are tested with benchmark solutions
Some peer review conducted

All important algonthms are tested to
determine the observed order of
numerical convergence

All important F&Cs are tested with
rigorous benchmark solutions
Independent peer review conducted

Solution Verification
Are numerical solution errors and
human procedural errors
corrupting the simulation results?

« Judgment only

Numerical errors have
an unknown or large
effect on simulation
results

Numerical effects on
relevant SRQs are
qualitatively estimated
Input/output (1/0) verified
only by the analysts

0

0

Numerical effects are quantitatively
estimated to be small on some
SRQs

/O independently verified

Some peer review conducted

Mumerical effects are determined to be
small on all important SARQs

Important simulations are independently
reproduced

Independent peer review conducted

Model Validation
How carefully Is the accuracy of
the simulation and experimental

results assessed at varlous tlers In
a valldatlon hlerarchy?

)

Judgment only
Few, if any,
comparisons with
measurements from
similar systems or
applications

Quantitative assessment
of accuracy of 3RQs not
directly relevant to the
application of interest
Large or unknown exper-
imental uncertainties

0

0

Quantitative assessment of
predictive accuracy for some key
SRQs from IETs and SETs
Experimental uncertainties are well
characterized for most SETs, but
poorly known for IETs

Some peer review conducted

Quantitative assessment of predictive
accuracy for all important SRQs from
IETs and SETs at conditions/geometries
directly relevant to the application
Expenmental uncertainties are well
characterized for all IETs and SETs
Independent peer review conducted

Uncertainty
Quantification
and Sensitivity

Analysis
How thoroughly are uncertaintles
and sensltivitles characterlzed and
propagated?

Judgment only
Only deterministic
analyses are
conducted
Uncertainties and
sensitivities are not
addressed

Aleatory and epistemic
(A&E) uncertainties
propagated, but without
distinction

Informal sensitivity
studies conducted
Many strong UQ/SA
assumptions made

0

A&E uncertainties segregated,
propagated and identified in SRQs
Quantitative sensitivity analyses
conducted for most parameters
Numerical propagation errors are
estimated and their effect known
Some strong assumptions made
Some peer review conducted

A&E uncertainties comprehensively
treated and properly interpreted
Comprehensive sensitivity analyses
conducted for parameters and models
MNumerical propagation errors are
demonstrated to be small

No significant UQ/SA assumptions made
Independent peer review conducted

» See report SAND2007-5948 by Oberkampf, Pilch, and Trucano
Courtesy of Angel Urbina (SNL)

25-27 October 2010

Fall Creek Falls Conference

12

common Component Architecture

The Common Component
Architecture (CCA)

CCA ¢ —
77

e Grassroots effort, started in 1998 _,_’7““’ wS
— Lab and university application and computer compler -
SC'en’“sts 1945 1866 1965 19:’:”1995 9% 2008

e Bring component-based software development to HPC
for computational science and engineering

e Increase awareness of software architecture and how It
effects the entlre software lifecycle

CCA-based combustion application “wiring diagram” GWACCAMOLE smooth-particle hydrodynamics subsurface
and results. Courtesy Cosmin Safta, (SNL) modeling code and results. Courtesy Bruce Palmer (PNNL)

COMMUNITY SURFACE DYNAMICS MODELING SYSTEM \'h‘:_- . “‘_’J

25-27 October 2010 Fall Creek Falls Conference

[

3

#ENEAMS

NUCLEAR ENERGY ADVANCED MODELING & SIMULATION PROGRAM

Patterns for HPC Nes @Pattems

Flements of Reusable
Object-Oriented Software

« Patterns are general, reusable solutions to
commonly occurring problems in software PATTERNS
development FOR PARALLEL

PRO(;RAM\/II\I(I

« Patterns for architecture, design, algorithms,
« Templates, not finished code

« Pattern languages

« Used extensively in industry

. thtle used in HPC

NEAMS Module Manager (B) Diagram

nnnnnnnnnnnnnnnnn
<> Builder

Courtesy of Jay Billings (ORNL)
25-27 October 2010 Fall Creek Falls Conference 14

Refactoring

» Code refactoring is the process of changing a computer program's source
code without modifying its external functional behavior in order to
Improve some of the nonfunctional attributes of the software

— Improve readability, reduce complexity,
restructure architecture or object model

» Refactoring tools widely used in industry

* In HPC refactoring is usually done
manually or sed scripts
— Intimidating, so rarely done
— Error prone

* Photran refactoring for Fortran

— Rename, Encapsulate variable, Interchange
loops, Introduce Implicit None, Move Saved
Variables to Common Block, Replace Obsolete
Operators, Standardize Statements, Remove
Unused Variables, Data to Parameter, Extract
Procedure, Extract Local Variable, Canonicalize
Keyword Capitalization, Make COMMON
Variable Names Consistent, Add ONLY Clause

to USE Statement, Minimize ONLY List, Make Private Entity Public

25-27 October 2010

Fall Creek Falls Conference

i e i =lalil
e G Mawiged arh Prapect [in frdom [
O & [P dle - T Sisanran |
ot =1 Ty =05 puteen & 8 |
s -
e
Photran: an IDE and refactoring
tool for Fortran. Part of the Eclipse
Parallel Tools Platform project.
From www.eclipse.org/photran/
15

Behind the Scenes of
Refactoring Tools

» Refactoring is a source-to-source (s2s) ‘ R
transformation of the source code
 Like a compiler, but... et e W,T;‘L e
— Refactoring transformations rather than : : % = :
optimizations oo o
— Emits code in a programming language ' u-u-m
instead of object code ‘: :’-m

 ROSE is a compiler infrastructure designed int mainQ) {
Range 1(1,98,1),J(1,98,1);

for s2s doubleArray A(100,100); -
— Led by Dan Quinlan (LLNL), DOE supported doubleArray B(100,100); , . e
— Primary use is for perfprmance o.ptl_mlzatlons ACL,J) = B(1,3)+B(1,) ";
— Also used for automatic differentiation +B(1,3)+B(1,J); -
— Writing transformations is hard y return 0;
ﬂ* MT;“ i ** Wl W G e—— "|

25-27 October 2010 Fall Creek Falls Conference & @ - i e - 16

COMPOSE-HPC

* Recent X-Stack award Examples of compositions of
— Galois, LLNL, ORNL, PNNL, SNL interest...
» Facilitate composition of software e Performance instrumentation
(in many forms) « CPUs and accelerators (i.e. GPUS)
— And related challenges (i.e. « Verification and trust (contracts)
refactoring) | « Programming languages
 Building tools for annotation . Threads

languages, s2s transformation, and
code generation

— KNOT: Nimble Orchestration Toolkit
* PAUL: annotation parsing facility
« ROTE: Retargettable Open Qriginal
Transformation Engine
 BRAID: code generation
and optimization

BABEL BRAID

e Concurrency

SIDL

{ Procedural [R

i,

Torm Rewriting
PAUL - ST (ROTE)

f

— }

25-27 October 2010 Fall Creek Falls Conference 17

A Long-Term Vision for Software
Engineering in a Rapidly Changing

World

« HPC application developers are
facing a period of significant
uncertainties and rapid
changes in the underlying
hardware

« How are they going to cope?

o Software engineering tools are
going to be central to

maintaining developer sanity
— Systematize, automate, check,
transform

25-27 October 2010

Fall Creek Falls Conference

Science App Timeline

Scientist's

Main Branch
Timeline

F’O\nﬂ‘

Exotic HPC Arch

&
.
<®

Collaborative App

Autom,,

uon

PO*

Exotic Arch 2

Moves with
Scientist's
Branch

Y

Courtesy of Rob Armstrong (SNL)

18

HHENEAMS

NUCLEAR ENERGY ADVANCED MODELING & SIMULATION PROGRAM

Nuclear Energy Advanced Modeling
and Simulation (NEAMS)

* Program of the Office of
Nuclear Energy, Advanced
Modeling and Simulation
Office

 NEAMS will produce truly
predictive simulation tools to
accelerate growth of the
nuclear enterprise in ways
that are too costly or time
consuming to achieve by
experimentation alone

* VV&UQ, and software
engineering built into the
program

25-27 October 2010

+ 3D, 2D, 1D

- Science Based Physical
Behaviors

+ High Resolution

- Integrated Systems

+ Advanced Computing P

Science Baséd
_.Nugélear Energy
Systems

+ Low Dimensionality 1
+ Test Based Physical f |

Behaviors
+ Low Resolution ,l
- Uncoupled Systems jonary
+ Workstation Computing o E\’o\\.l‘

2030

Reactors
IPSC

SafeSeps
IPSC

Fundamental Methods and Models
Verification, Validation & Uncertainty Quantification

Capability Transfer

Enabling Computational Technologies

Fall Creek Falls Conference 19

Conclusions

e There is a long-standing disconnect between
computational science and software engineering

 ASCIl and NEAMS are examples of large-scale research
software efforts which are benefitting from software
engineering
— Software engineering built into the programs!

* More software engineering research is needed to support

HPC and computational science
— Currently spotty, many gaps, lacks critical mass

« Are we repeating our mistakes?
— Yes

Do we have to continue repeating them?
— No

25-27 October 2010 Fall Creek Falls Conference

20

Acknowledgements

* Angel Urbina, SNL

e Greg Pope, LLNL
 Jay Billings, ORNL

e Cosmin Safta, SNL

e Bruce Palmer, PNNL
 Rob Armstrong, SNL

* Apologies to relevant
projects not cited!

25-27 October 2010

Supported by...

ICo0, Yiee of - wNEAMS

NUCLEAR ENERGY ADVANCED MODELING B SIMLLATION PROGRAM

5. DEFARTMENT OR ENERGY

Fall Creek Falls Conference

X-Stack Research

21

