
Repeating Our p g
Mistakes? Software
Engineering for HPCEngineering for HPC

David E. Bernholdt

Oak Ridge National Laboratory
bernholdtde@ornl.gov

25-27 October 2010 1Fall Creek Falls Conference

Observations on the Sociology of gy
Computational Science

• Most computational scientists learn computing from
mentors and peers within their disciplines
– Little or no formal training in computer science
– Informal “self-study” of computer science is spottyy p p y

• Reward structure favors communicating scientific results
– Not the software that enabled the science

W th ft i titi• Worse: the software gives competitive
advantage!

– Even less the engineering that
enabled the softwareenabled the software

• Silos of excellence from a domain
perspectivep p
– Horizontal knowledge transfer diffusion

is much slower
25-27 October 2010 2Fall Creek Falls Conference

Observations on Software Engineering g g
in Computational Science

M thi k ft i i t h i ’t• Many think software engineering techniques aren’t
applicable to research (software)

• Many think their code is small and simple and doesn’t• Many think their code is small and simple, and doesn t
need “fancy” engineering

• Many researchers have a short term perspective on theirMany researchers have a short term perspective on their
software
– Probably commensurate with reward system

Software engineering is often a long term investment up front– Software engineering is often a long-term investment – up-front
costs for often nebulous future payoffs

• Many see software engineering as something that takes
time and effort away from scientific progress

25-27 October 2010 3Fall Creek Falls Conference

Is Software Engineering g g
Really So Bad?

• Software engineering is … dedicated to designing,
implementing, and modifying software so that it is of
higher quality, more affordable, maintainable, and g q y, , ,
faster to build.
– Wikipedia [emphasis mine]

Th li i f i di i li d• The application of a systematic, disciplined,
quantifiable approach to the development, operation,
and maintenance of software; that is, the application of ; , pp
engineering to software.
– Guide to the Software Engineering Body of Knowledge, IEEE

2001 [emphasis mine]2001 [emphasis mine]

25-27 October 2010 4Fall Creek Falls Conference

Why the Disconnect?

••••

y

• Lack of understanding of software g
engineering by computational scientists

• Lack of understanding of computational
science by software engineersscience by software engineers

• Software engineering for the wrong reasons

• The wrong software engineering techniquese o g so t a e e g ee g tec ques

• Software engineering has matured
significantly

• Those who cannot remember the past are
condemned to repeat it.
– George Santayana

25-27 October 2010 5Fall Creek Falls Conference

And Can We Recover From It?

What Can Software Engineering Do
For Computational Science?p

Who’s Doing It Better?

Is Research Needed in SE for HPC and
Computational Science?

25-27 October 2010 6Fall Creek Falls Conference

Configure & Build is Hard!

••••••••

g
But That Doesn’t Mean We
Can’t Do Better (If We Try)!

make
Autoconf

Automake

Apache Buildr
Apache Maven

A A P

Deb Creator
Debian Package Maker

ElectricCommander

OpenMake Meister
OMake

Perforce JamAutomake
CMake
Scons

Apache Ant

A-A-P
Automated BuildStudio

buildfactory
Bamboo

ElectricCommander
Fabricate

FinalBuilder
Go

Perforce Jam
premake

Project-Builder.org
SBTApache Ant

ClearMake
mk

nmake

Bamboo
BuildIT
Buildout
CABIE

Go
GNU Build Tools

Gradle
Hudson

SBT
SparkBuild
Tweaker

PBSnmake
Rake

MPW Make
AnthillPro

CABIE
Cascade
Contexo

cook

Hudson
MidVision RapidDeploy

MSBuild
NAnt

PBS
Visual Build

Waf

25-27 October 2010 7Fall Creek Falls Conference

AnthillPro cook NAnt

Five Year Study -y
Complexity and Defects in R&D Codes

• Code complexityp y
correlates
strongly with
actual defects,
static analyzer
issues

Courtesy of Greg Pope (LLNL)

25-27 October 2010 8Fall Creek Falls Conference

Techniques for Detecting and
••••••••••

q g
Preventing Bad Code

30

Detection Techniques
30

Prevention Techniques

5

10

15

20

25

30

5

10

15

20

25

30

0

5

er
 In
sp
ec
tio

ns

sp
ec
tio

ns
 a
nd

 …

U
ni
t T

es
t

St
at
ic
 A
na
ly
si
s

am
ic
 A
na
ly
si
s

ra
tio

n
Te
st
in
g

tio
na
l T
es
tin

g

nd
ar
y
Te
st
in
g

go
ri
tm

 T
es
tin

g

Lo
ad

 a
nd

 …

ab
ili
ty
 T
es
tin

g

tf
or
m
 T
es
tin

g

es
si
on

 T
es
tin

g

ga
tiv
e
Te
st
in
g

er
fa
ce
 T
es
tin

g

oc
um

en
ta
tio

n …

la
tio

n
Te
st
in
g Detection0

5

Prevention

• Requirements review
• Design review

• Code inspections
• Static analysis

Co
de

 P
ee

Te
st
 I
ns S

D
yn

S/
W
 In
te
g r

Fu
nc
t

Bo
u

A
l g

U
sa

Pl
at

Re
gr
e

N
eg

In
te D
o

In
st
al

• Design review
• OO programming
• Coding standards
• Configuration management

• Static analysis
• Usability testing
• Functional testing
• Algorithm, platform, regression,Configuration management Algorithm, platform, regression,

negative testing

25-27 October 2010 9Fall Creek Falls Conference

Courtesy of Greg Pope (LLNL)

Development Processesp

Th ft i i• The software engineering
community has gotten a lot more
sophisticated about development p p
processes

• Common in industry to have
distributed teams developing
large, complex software systems
with changing requirements

Classic “Waterfall” Development Process

Some current processes:g g q

• Active area of research
– Software, people, management

p
• SCRUM, Agile, XP, Kanban,

TDD, FDD, RUP, …

• New approaches often over-hyped

25-27 October 2010 10Fall Creek Falls Conference

Agile Model Driven Design (AMDD)g g ()

• Combination of Agile &
Rational Unified Process

• Model driven (UML, not
M&S)M&S)

• Incorporates Test-Driven
Development

• Development is iterative
• Releases at the end of each

iteration
• Delivers functionality

incrementally, which allows
requirements to changerequirements to change

25-27 October 2010 11Fall Creek Falls Conference

Courtesy of Jay Billings (ORNL)

Burndown chart for July 2010 iteration

Predictive Capability Maturity Model p y y
(for Computational M&S)

• A tool for assessing
and communicating
progress in predict-
ive capability
– Help organize and

systematize VV &
UQ

• PCMM components:• PCMM components:
– M&S elements
– Maturity levels
– Assessment

criteria
• It is application

specific
• See report SAND2007-5948 by Oberkampf, Pilch, and Trucano

25-27 October 2010 12Fall Creek Falls Conference

Courtesy of Angel Urbina (SNL)

The Common Component
CCA
Common Component Architecture

••••

p
Architecture (CCA)

• Grassroots effort, started in 1998
L b d i it li ti d t– Lab and university application and computer
scientists

• Bring component-based software development to HPC
for computational science and engineering

• Increase awareness of software architecture and how it
effects the entire software lifecycleeffects the entire software lifecycle

GWACCAMOLE smooth-particle hydrodynamics subsurfaceCCA-based combustion application “wiring diagram”

25-27 October 2010 13Fall Creek Falls Conference

GWACCAMOLE smooth particle hydrodynamics subsurface
modeling code and results. Courtesy Bruce Palmer (PNNL)

CCA based combustion application wiring diagram
and results. Courtesy Cosmin Safta, (SNL)

Patterns for HPC
•••

• Patterns are general, reusable solutions to
commonly occurring problems in software y g p
development

• Patterns for architecture, design, algorithms, …
• Templates not finished code• Templates, not finished code
• Pattern languages
• Used extensively in industry
• Little used in HPC

25-27 October 2010 14Fall Creek Falls Conference

Courtesy of Jay Billings (ORNL)

Refactoring
• Code refactoring is the process of changing a computer program's source

code without modifying its external functional behavior in order to
improve some of the nonfunctional attributes of the software
– Improve readability, reduce complexity,

restructure architecture or object model
• Refactoring tools widely used in industry
• In HPC refactoring is usually done• In HPC refactoring is usually done

manually or sed scripts
– Intimidating, so rarely done
– Error proneError prone

• Photran refactoring for Fortran
– Rename, Encapsulate variable, Interchange

loops, Introduce Implicit None, Move Saved
Photran: an IDE and refactoring
tool for Fortran. Part of the Eclipse
Parallel Tools Platform project.
From www.eclipse.org/photran/

Variables to Common Block, Replace Obsolete
Operators, Standardize Statements, Remove
Unused Variables, Data to Parameter, Extract
Procedure, Extract Local Variable, Canonicalize
Keyword Capitalization, Make COMMON
Variable Names Consistent, Add ONLY Clause
to USE Statement, Minimize ONLY List, Make Private Entity Public

25-27 October 2010 15Fall Creek Falls Conference

Behind the Scenes of
Refactoring Tools

R f t i i t (2)• Refactoring is a source-to-source (s2s)
transformation of the source code

• Like a compiler, but…
R f t i t f ti th th– Refactoring transformations rather than
optimizations

– Emits code in a programming language
instead of object codej

• ROSE is a compiler infrastructure designed
for s2s
– Led by Dan Quinlan (LLNL), DOE supported

int main() {
 Range I(1,98,1),J(1,98,1);
 doubleArray A(100,100);
 doubleArray B(100,100);

– Primary use is for performance optimizations
– Also used for automatic differentiation
– Writing transformations is hard

 A(I,J) = B(I,J)+B(I,J)
 +B(I,J)+B(I,J);
 return 0;
}

25-27 October 2010 16Fall Creek Falls Conference

COMPOSE-HPC
• Recent X-Stack award

– Galois, LLNL, ORNL, PNNL, SNL
• Facilitate composition of software

Examples of compositions of
interest…

• Performance instrumentationFacilitate composition of software
(in many forms)
– And related challenges (i.e.

refactoring)

Performance instrumentation
• CPUs and accelerators (i.e. GPUs)
• Verification and trust (contracts)
• Programming languages

• Building tools for annotation
languages, s2s transformation, and
code generation

Programming languages
• Threads
• Concurrency

– KNOT: Nimble Orchestration Toolkit
• PAUL: annotation parsing facility
• ROTE: Retargettable Open

Transformation EngineTransformation Engine
• BRAID: code generation

and optimization

25-27 October 2010 17Fall Creek Falls Conference

A Long-Term Vision for Software g
Engineering in a Rapidly Changing

World

• HPC application developers are
facing a period of significant g p g
uncertainties and rapid
changes in the underlying
hardwarehardware

• How are they going to cope?

S ft i i t l• Software engineering tools are
going to be central to
maintaining developer sanity
– Systematize, automate, check,

transform
25-27 October 2010 18Fall Creek Falls Conference

Courtesy of Rob Armstrong (SNL)

Nuclear Energy Advanced Modeling gy g
and Simulation (NEAMS)

• Program of the Office of
N l E Ad dNuclear Energy, Advanced
Modeling and Simulation
Office

• NEAMS will produce truly
predictive simulation tools to
accelerate growth of the
nuclear enterprise in ways
that are too costly or time
consuming to achieve by
experimentation alone Waste SafeSeps Fuels Reactorsexperimentation alone

• VV&UQ, and software
engineering built into the

IPSC
p

IPSC IPSC IPSC

Fundamental Methods and Models

Verification, Validation & Uncertainty Quantification
program

25-27 October 2010 19Fall Creek Falls Conference

Capability Transfer

Enabling Computational Technologies

Conclusions

••

• There is a long-standing disconnect between
computational science and software engineeringcomputational science and software engineering

• ASCI and NEAMS are examples of large-scale research
software efforts which are benefitting from softwaresoftware efforts which are benefitting from software
engineering
– Software engineering built into the programs!

• More software engineering research is needed to support
HPC and computational science
– Currently spotty, many gaps, lacks critical mass

• Are we repeating our mistakes?
– Yes

• Do we have to continue repeating them?
– No

25-27 October 2010 20Fall Creek Falls Conference

Acknowledgementsg

• Angel Urbina, SNL Supported by…g ,

• Greg Pope, LLNL

pp y

• Jay Billings, ORNL

• Cosmin Safta SNLCosmin Safta, SNL

• Bruce Palmer, PNNL

• Rob Armstrong, SNL

• Apologies to relevant• Apologies to relevant
projects not cited!

25-27 October 2010 21Fall Creek Falls Conference

X-Stack Research

