THE INSTITUTE FOR ADVANCED ARCHITECTURES
AND ALGORITHMS (IAA ALGORITHMS)

AND

THE EXTREME-SCALE ALGORITHMS & SOFTWARE
INSTITUTE (EASI)

Michael Heroux

Sandia National Laboratories

Fall Creek Falls Conference
October 2010

- Research supported by DOE ASCR & NNSA

About Co-Design
(Simplified & Parochial)

We have always done it, to some extent.

Why the big interest now:
Power constraints imply ...

Node architecture changes imply...

Our . . Feedback
errorts:| = OS/Runtime changes imply ... 2 Advice
Algs & Algorithm changes imply ... to/from
Libs

New programming models imply ...

Application redesign ...
The entire “stack” is in flux

Opportunities for co-design.

|AA -Institute for Advanced i m

Architectures and Algorithms

O

Begun in FY2009 as Joint effort between Sandia National Labs and Oak
Ridge National lab, it has a steering committee, advisory board, and
underlying project(s)

Focused R&D on key impediments to high performance in partnership with
industry and academia

Foster the integrated co-design of architectures and algorithms to enable
more efficient and timely solutions to mission critical problems

Impact vendor roadmaps through partnership and joint research and
development

IAA Algorithms Project is funded through this Institute

IAA Algorithms Project Overview I

It all revolves around the science
e

Multi-core Aware Multi-precision
Hierarchical, Parallel in time Krylov, Poisson, Helmholtz
Hierarchical MPI Al ith Extreme Scale
MPI_Comm_Node, etc gorithms Million node systems
Shared memory Node level
MPI_Alloc_Shared Detailed kernel studies
RUNt Science Simulati
. . Imuiation
untime Applications

Memory hierarchy
Future designs

Multi-core
Processor affinity
M ffinit i
emory affinity Architecture Interconnect

Scheduling
Threading Latency/BW effects

Influence design

Technical Details

Architecture Aware Algorithms

11 Develop robust multi-precision algorithms:
Multi-precision Krylov and block Krylov solvers.
Multi-precision preconditioners: multi-level, smoothers.

Multi-resolution, multi-precision solver fast Poisson and Helmholtz solvers coupling direct
and iterative methods

1 Develop multicore-aware algorithms:
Hybrid distributed /shared preconditioners.

Develop hybrid programming support: Solver APIs that support MPl-only in the application
and MPIl+multicore in the solver.

Parallel in time algorithms such as Implicit Krylov Deferred Correction
1 Develop the supporting architecture aware runtime:

Multi-level MPI communicators (Comm_Node, Comm_Net).

Multi-core aware MPl memory allocation (MPI_Alloc_Shared).

Strong affinity -process-to-core, memory-to-core placement.

Efficient, dynamic hybrid programming support for hierarchical MPI plus shared memory in
the same application.

IAA Algorithms Project Team
Mix of math, CS, apps experts

o Climate (HOMME)
Mike Heroux, Mark Taylor, Chris Baker (SNL)
George Fann, Jun Jia, Kate Evans (ORNL)
1 Materials and Chemistry (MADNESS)
George Fann, Judith Hill, Robert Harrison (ORNL)
Mike Heroux, Curt Janssen (SNL)
1 Semiconductor device physics (Charon)
George Fann, John Turner (ORNL)
Mike Heroux, John Shadid, Paul Lin (SNL)
1 Runtime and Affinity
Ron Brightwell, Kevin Pedretti, Brian Barrett (SNL)
Al Geist, Geoffroy Vallee, Gregg Koenig (ORNL)
o Simulation
Arun Rodrigues, Scott Hemmert (SNL),
Christian Engelmann, Kalyan Perumalla (ORNL)
Bob Numrich (UM), Bruce Jacobs (U Maryland), Sudhakar (GaTech)
71 Project team includes key application developers

11 Excellent cross site teaming

Four DOE Math/CS Institutes

CACHE - Communication Avoidance and Communication
Hiding at the Extreme Scale
Lead by Erich Strohmaier — LBNL, ANL, UCB, & Colorado SU
Goal: simplify algorithm specification, orchestration of data
movements, mapping to complex computer architectures, portable
performance
Nonlinear Algorithms to Circumvent the Memory
Bandwidth Limitations of Implicit PDE Simulations
Led by Barry Smith — ANL, BNL, ORNL, U of Chicago & U of Kansas
Goal: Efficient, scalable implicit solution of nonlinear PDEs

|/O Coordination to Improve HEC System Performance: A
Marriage of Analytical Modeling, Control Theory
Lead by Pat Teller — U Texas El Paso

Goal: Extend the scalability of checkpoint/restart and reduce the stress on
the 1/O system and resultant failures

EASI

Extreme-scale Algorithms & Software Institute -
EASI

Architecture-aware Algorithms for Scalable
Performance and Resilience on Heterogeneous
Architectures

EASI Team
Lead PI: Al Geist (ORNL)

Ron Brightwell (SNL)

Jim Demmel (UC Berkeley)
Jack Dongarra (UTK/ORNL)
George Fann (ORNL)

Bill Gropp (UIUC)

Michael Heroux (SNL)

EASI Goals:

Study and characterize the application-architecture performance gaps that we can
address in the near-term and identify architecture features that future systems may
want to incorporate.

Develop multi-precision and architecture-aware implementations of Krylov, Poisson,
Helmholtz solvers, and dense factorizations for heterogeneous multi-core systems.

Explore new methods of algorithm resilience, and develop new algorithms with these
capabilities.
Develop runtime support for adaptable algorithms that are dealing with resilience,

scalability, and performance.

Demonstrate architecture-aware algorithms in full DOE applications on large-scale
DOE architectures

Distribute the new algorithms and runtime support through widely used software
packages.

Establish a strong outreach program to disseminate results, interact with colleagues
and train students and junior members of our community.

EASI uses co-design to provide both
near and long-term Impact:

Integrated team of math, CS, and application experts working
together to create new:

Architecture-aware algorithms and associated runtime to enable many
science applications to better exploit the architectural features of DOE’s
petascale systems.

Applications team members immediately incorporate new algorithms
providing Near-term high impact on science

Numerical libraries used to disseminate the new algorithms to the wider
community providing broader and longer-term impact.

EASI Project Overview
Addressing Heterogeneity and Resilience

L HOMME
Applications MADNESS

Charon

Krylov
_ Poisson
Algorithms eimnotz

Dense NLA
BLAS

MPI

Research Areas in Institute

Heterogeneous programming API
Robust multi-precision algorithms
Hybrid programming

Resilient algorithms

Communication optimal algorithms
Auto-tuned BLAS (API)

Q\lew parallelization methods)

Task placement and scheduling

Runtime Shared-memory | Memory management
Processor affinity | Architecture-aware MPI
Memory affinity _ -

"D

Architecture Heterogeneous, multi-core, extreme-scale

Community
Outreach

~

eliver codes
to community
through:

ScaLAPACK
Trilinos
Open MPI
MPICH?2
MADNESS
HOMME

= /

Workshops
Training
Publications

EASI Budget

Duration: 3 years.

Started in Fall of 2009 for Labs
Spring/Summer 2010 for Universities

Total funding over 3 years $7.425M
ORNL $1M/year
SNL $1M/year
UTK ~$150K/year
UCB ~$150K/year
UIUC ~$150K /year

13

Basic Exascale Concerns: Trends, Manycore

Stein’s Law: If a trend cannot

continue, it will stop.

Herbert Stein, chairman of the Council of
Economic Advisers under Nixon and
Ford.

Trends at risk:
Power.
Single core performance.
Node count.

Memory size & BW.

Concurrency expression in
existing Programming
Models.

Gigaflops

Parallel CG Performance 512 Threads
32 Nodes = 2.2GHz AMD 4sockets X 4cores

180
160
140
120
100

N B O O
o O O ©o

P —. A/

o

1E+05 1E+06

“Status Quo” ~ MPI-only

p32 x t16

A
/A/A —8—-p128 x t4
_ —a=p512 X t1

1E+07

3D Grid Points with 27pt stencil

Strong Scaling Potential

Edwards: SAND2009-8196
Trilinos ThreadPool Library v1.1.

14

Breaking Timestep Sequentiality

G. Fann, J. Jia, J. Hill, K. Evans ORNL

High Order Pseudo-Parallel Time Stepping M. Taylor SNL

With Application to Climate Dynamics

Toward Accurate Long Term Predictions

geop at level = 0 time=14 days

90N

60N

30N

308

603

908
180 150W 120w 90W 60W 30W 0 30E 60E 90E 120E 150E 180

8500 9000 9500 10000 10500 11000

Simulation of the shallow-water equation using the HOMME for test
case 6. The geopotential height is shown above for 14 simulated
days.

L2 norm Err of Geopotential Height at 1 day, TC6 ne=48, NP=4

L2 Norm Error

° Fully Implicit
o |——sdc-2,p=1 |
| —*—sdc-4,p=2
——sdc-6,p=3
" ‘ : ' ¥ - |—=sdc-8,p=4
10 1 ‘2 I3 4 5
10 10 10 10 10

Time Step Size (s)

Improved accuracy using high-order time stepping is illustrated as the simulation
evolves over time. The error of the implicit Jacobian-Free-Newton-Krylov fully implicit
method and the hybrid Krylov deferred correction implicit methods from orders 2 to
order 8 are shown. These are more accurate than existing time-stepping methods in
HOMME. This simulation was performed using more than 4000 cores on ORNL’s
Cray XT-5

16

Minimizing Data Movement

Communication Avoiding Algorithms

Goal: Algorithms that communicate as little as possible

Direct methods (BLAS, LU, QR, SVD, other decompositions)
Communication lower bounds for all these problems

Algorithms that attain them (all dense linear algebra, some sparse)
Mostly not in LAPACK or ScalAPACK (yet)

lterative methods — Krylov subspace methods for Ax=b,
Ax=Ax

Communication lower bounds, and algorithms that attain them
(depending on sparsity structure)

Not in any libraries (yet). Coming to Trilinos.

Communication-avoiding iterative methods

Iterative Solvers:
— Dominant cost of many apps (up to 80+% of runtime).
Exascale challenges for iterative solvers:
— Collectives, synchronization.
— Memory latency/BW.
— Not viable on exascale systems in present forms.
Communication-avoiding (s-step) iterative solvers:
— Idea: Perform s steps in bulk (s=5 or more):
* s times fewer synchronizations.
* stimes fewer data transfers: Better latency/BW.
— Problem: Numerical accuracy of orthogonalization.

New orthogonalization algorithm:
— Tall Skinny QR factorization (TSQR).

— Communicates less and more accurate
than previous approaches.

— Enables reliable, efficient s-step methods.
TSQR Implementation:

— 2-level parallelism (Inter and intra node).

— Memory hierarchy optimizations.

— Flexible node-level scheduling via Intel Threading Building Blocks.
— Generic scalar data type: supports mixed and extended precision.

Multicore Orthogonalization Performance
1Mx10 matrix, 8-core Nehalem, Intel Compilers

0.35
*

0.3

0.25

=
g oolz B— — o —— ——LAPACK QR
= 01 “B=MGS
0.05 TSQR
0
1 2 4 8

Number of Cores

LAPACK — Serial, MGS —Threaded modified Gram-Schmidt

TSQR capability:

e Critical for exascale solvers.

* Part of the Trilinos scalable multicore
capabilities.

* Helps all iterative solvers in Trilinos
(available to external libraries, too).

. Staffing: Mark Hoemmen (lead, post-doc,
UC-Berkeley), M. Heroux

* Part of Trilinos 10.6 release, Sep 2010.

19

Bi-Modal MPI and MPI+X

Preconditioners for Scalable Multicore Systems

Charon Timing Breakdown on TLCC Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)
Strong Scaling 28M Unk - -
rone Scating rinowns # Linear Solver Iterations
100% Charon minus solver
per Newton Step
o 80% 180 129 153
£ ~ i o0 117 117 125
= 60% solve time due to iter P o 111
- increase 3 100
3 a0% | | = 5
o ' Solve time due to iter A
20% | cost
0% Precondiﬁoner Setup 128 256 512 1024 2048 4096
128 256 512 1024 2048 4096 # MPI Ranks
Procs
* Observe: Iteration count increases with number of subdomains. el

20

With scalable threaded smoothers (LU, ILU, Gauss-Seidel):
— Solve with fewer, larger subdomains.
— Better kernel scaling (threads vs. MPI processes).
— Better convergence, More robust.
Exascale Potential: Tiled, pipelined implementati

Three efforts:
— Level-scheduled triangular sweeps (ILU solve, Gauss-Seidel).
— Decomposition by partitioning

4096 1
2048 2 129

1024 4 125

— Multithreaded direct factorization

Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and
Michael A. Heroux and Erik G. Boman, VECPAR 2010.

MPI| Shared Memory Allocation

Idea:
» Shared memory alloc/free
functions:

— MPI_Comm_alloc_mem
— MPI_Comm_free_mem

* Predefined communicators:
MPI_COMM_NODE - ranks on node
MPI_COMM_SOCKET — UMA ranks
MPI_COMM_NETWORK - inter node

» Status:

— Available in current development
branch of OpenMPI.

— First “Hello World” Program
works.

— Incorporation into standard still
not certain. Need to build case.

— Next Step: Demonstrate usage
with threaded triangular solve.

» Exascale potential:

— Incremental path to MPI+X.
— Dial-able SMP scope.

mtn=...;
double* values;
MPI_Comm_alloc_mem(
MPI_COMM_NODE, // comm (SOCKET works too)

n*sizeof(double), // size in bytes

MPI_INFO_NULL, // placeholder for now

&values); // Pointer to shared array (out)
// At this point:

// - All ranks on a node/socket have pointer to a shared buffer (values).

// - Can continue in MPI mode (using shared memory algorithms) or

// - Can quiet all but one:

int rank;

MPI_Comm_rank(MPI_COMM_NODE, &rank);

if (rank==0) { // Start threaded code segment, only on rank O of the node

MPI_Comm_free_mem(MPI_COMM_NODE, values);

Bi-Modal MPI and MPI+Threads Computing on Scalable Multicore Systems,
21 Michael A. Heroux and Michael M. Wolf IPDPS 2011, submitted.

Two Threaded Smoother Approaches* Bordered block diagonal form:

— Compute the subdomains via hypergraph

o e artitioner (Zoltan
Decomposition by Partitioning P ()

P1

— Compute doubly bordered block diagonal
form as part of factorization.

— P1... P4 correspond to multiple sockets in
a multicore node.

* Multithreaded direct factorization KLU2:
 Templated version of popular KLU solver.

e New multithreaded direct factorization.

BNk

* T1..T2: multiple threads within same

socket.
KLU2 : Multithreaded Direct Factorization * Incomplete version as preconditioner.
1 X
2 X X © T
X
‘ T2
X X
X @ —1/m
X
7 X
X X X 8 X Staffing: Siva Rajamanickam (lead,

postdoc, U-FL), Erik Boman

23

Improving Data Placement

24

Data Placement on NUMA

* Memory Intensive computations: Page placement has
huge impact.

* Most systems: First touch.

« Application data objects:

— Phase 1: Construction phase, e.g., finite element
assembly.

— Phase 2: Use phase, e.g., linear solve.
* Problem: First touch difficult to control in phase 1.
* |dea: Page migration.

— Not new: SGI Origin. Many old papers on topic.

25

Data placement experiments

* MiniApp: HPCCG (Mantevo Project)
 Construct sparse linear system, solve with CG.
* Two modes:
— Data placed by assembly, not migrated for NUMA
— Data migrated using parallel access pattern of CG.
* Results on dual socket quad-core Nehalem system.

Weak Scaling Problem

6000
5000
4000
3000

MFLOPS/s

2000
1000

Weak Scaling
Dim 260K Per core

=

pd

y-,///;7P—. ——=MP]

-#-Non-conditioned

I l I 1 Conditioned

cores

* MPI and conditioned data approach comparable.

26

= Non-conditioned very poor scaling.

27

Page Placement summary

* MPI1+OpenMP (or any threading approach) is best
overall.
* But:
— Data placement is big issue.
— Hard to control.
— Insufficient runtime support.
 Current work:
— Migrate on next-touch (MONT).
— Considered in OpenMP (next version).
— Also being studied in Kitten (Kevin Pedretti).

28

Reducing Data Storage & Transfer Costs

Develop robust multi-precision algorithms

ldea Goes Something Like This...

Exploit 32 bit floating point as much as possible.
Especially for the bulk of the computation
Correct or update the solution with selective use of 64 bit
floating point to provide a refined results
Intuitively:
Compute a 32 bit result,

Calculate a correction to 32 bit result using selected higher precision
and,

Perform the update of the 32 bit results with the correction using high
precision.

Mixed-Precision lterative Refinement

lterative refinement for dense systems, Ax = b, can work this way.

L U = lu(A) SINGLE o(n’)
x = L\(U\b) SINGLE o(n?
r=>b- Ax DOUBLE o(n’)
WHILE || r || not small enough
z = L\(U\r) SINGLE o(n?)
X=X+2 DOUBLE o(n")
r=b- Ax DOUBLE o(n’)
END

Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when
using DP fl pt.

It can be shown that using this approach we can compute the solution to 64-bit
floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n?) work is done in lower precision

O(n?) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108)

Results for Mixed Precision lterative
Refinement for Dense Ax = b

 Single precision is faster than DP because:
= Higher parallelism within floating point units

* 4 ops/cycle (usually) instead of 2 ops/
cycle

= Reduced data motion

« 32 bit data instead of 64 bit data
= Higher locality in cache

* More data items in cache

Ax = b

500

Single Precision

450

400
350

300

Double Precision

250 —
B "

Gflop/s

200
150
100

50

960 3200 5120 7040 8960 11200 13120

Matrix size
Tesla C2050, 448 CUDA cores (14 multiprocessors x 32) @ 1.15 GHz.,

3 GB memory, connected through PCle to a quad-core Intel @2.5 GHz.

Ax = b

500

Single Precision

450

400

350

300

250

Gflop/s

Mixed Precision

Double Precision

4‘

4‘74‘7
++

200
150

100

960 3200 5120 7040 8960 11200

Matrix size
Tesla C2050, 448 CUDA cores (14 multiprocessors x 32) @ 1.15 GHz.,

3 GB memory, connected through PCle to a quad-core Intel @2.5 GHz.

13120

Sparse Direct Solver and lterative Refinement

MUMPS package based on multifrontal approach WhICh

generates small dense matrix multiplies

Opteron wiintel compiler

O lterative Refinement
Speedup Over DP

O Single Precision

2
B . 1
1.6-4T M L I
5wl mllil HI——
1211l i \ ﬁ] I‘{ A
= H r [
| I
0.6 |
0.4 I
0.2
o—%Ml
Oé} S, %e b0 b, o o
0’5’/@0/\/929’%9;0*%? 9@3%0%@%90@@7@00@%0%% g, %, % s, 0 4 _‘
% %%&‘9’25 %”39? o % 0%”/(? %
O,

Tim Davis's Collection, n=100K -3M

-
W
]

o

o [I S

[IRLINIYS S

FoH

Sparse lterative Methods (PCG)

o1 QOuter/Inner lteration Inner iteration:

Outer iterations using 64 bit floating point In 32 bit floating point

e Compute 7(°) = b — Az(®) for some initial guess z(®)
Compute 7(°) = b — Az(" for some initial guess z(% for i=1,2,...
+ solve M z(i=1) = p(i=1)
fOI‘ 1=]., 2, pi1 :r(i—l)TZ(i—l)

solve M z(i—=1) = p(i-1) ifi=1
VT (i1 p = 2O
Pi—1 — 71(1_) Z(z_) else
P Bi—1 = pi—1/pi
if:=1 Aty APy
1) — (0 endif
p() o A,’() q(') :Ap(“)
ai = pic1 /pD" g?
else 20 = z(}—l) + a;p®
Bi—1 = Pz, 1/Pz P) = pi=1) — g0
p(z) — 5 (1—-1) + 6 p(i—l) dcheck convergence; continue if necessary
1= en
endif
) = Ap(®)

Ay = pPi— 1/p2)T)

() = 20=1) 4 q,p0)

r() = p(i=1) — o, ¢00)

check convergence; continue if necessary
end

- Outer iteration in 64 bit floating point and inner iteration in
32 bit floating point

Mixed Precision Computations for
Sparse Inner/Quter-type Iterative Solvers

2.5
E 2.25
21 Speedups for mixed precision
1751 Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP
1.5 (CG?, GMRES?, PCG?, and PGMRES? with diagonal prec.)
1.251 (Higher is better)
" | mCG 2
0.75 - u PCG 2
051 GMRES °
0.25 - m PGMRES’
11,142 25,980 79,275 230,793 602,091
1.25
Iterations for mixed precision
N ~ SP/DP iterative methods vs DP/DP
075 (Lower is better)
Machine:
051 Intel Woodcrest (3GHz, 1333MHz bus)
0.25 1 Stopping criteria:
Relative to r, residual reduction (10-'?)
. 11,142 25,980 79,275 230,793 602,091 -€—— Matrix size

6,021 18,000 39,000 120,000 240,000 <— Condition number

37

Hybrid CPU/GPU Computing

Developing heterogeneous, multi-core-
aware algorithms and software

-1 Dense solvers for multicore/GPUs — MAGMA Project

MAGMA - based on LAPACK and extended for hybrid systems (multi-GPUs + multicore systems);

MAGMA - designed to be similar to LAPACK in functionality, data storage and interface, to allow
scientists to effortlessly port any LAPACK-relying software components to take advantage of new
architectures

MAGMA - to leverage years of experience in developing open source LA software packages and
systems like LAPACK, ScalLAPACK, BLAS, ATLAS as well as the newest LA developments (e.g.
communication avoiding algorithms) and experiences on homogeneous multicores (e.g. PLASMA)

MAGMA uses HYBRIDIZATION methodology based on

Representing linear algebra algorithms as collections
of TASKS and DATA DEPENDENCIES among them

Properly SCHEDULING tasks' execution over 'N \;Hybrid CPU+GPU algorithms

multicore and GPU hardware components T (small tasks for multicores and large
tasks for GPUs

One-Sided Dense Matrix Factorizations
(LU, QR, and Cholesky)

Thread Execution Control Unit

Example: Left-Looking Hybrid
. . X86 Host
-7 Cholesky factorization
A
Host
Memory
C D Device Memory
Commodity Accelerator (GPU)
MATLAB code LAPACK code Hybrid code
(1)B=B-A*A’ ssyrk_(“L”, “N”, &nb, &j, &mone, hA(j,0), ...) | cublasSsyrk('L', 'N', nb, j. mone, dA(j,0), ...)
cublasGetMatrix(nb, nb, 4, dA(j, j), *Ida, hwork, nb)
(2) B = chol(B, 'lower") spotrf_(“L”, &nb, hA(j, j), Ida, info) cublasSgemm('N', T, j, ...)
(3)D=D-C*A’ sgemm_(“N”, “T”", &j, ...) spotrf_(“L”, &nb, hwork, &nb, info)
cublasSetMatrix(nb, nb, 4, hwork, nb, dA(j, j), *lda)
(4)D=B\D strsm_(“R”, “L”, “T”, “N”, &j, ...) cublasStrsm('R', 'L', 'T",'N', j, ...)

CUDA implementation:
. a_ref points to the GPU memory
« GPU kernels are started asynchronously which results in overlapping
the GPU sgemm with transferring T to the CPU, factoring it, and sending the result back to the GPU

SP Cholesky on Multicore + Multi GPUs

1200

1000

800

Gflop/s

400

200

Parallel Performance of the hybrid SPOTRF (4 Opteron 1.8GHz and 4 GPU TESLA C1060 1.44GHz)

—&— 1CPU-1GPU

5000

—&—2CPUs-2GPUs

10000
Matrix sizes

3CPUs-3GPUs

15000

—#&— 4CPUs-4GPUs

—————

20000

25000

41

Increasing Resilience to Soft Errors

Every calculation matters

Description FLOPS | Recursive | Solution Error
Residual
Error

All Correct

343M 4.6e-15 1.0e-6

Calcs

Iter=2, y[1] +=

1

.0 35 343M 6.7e-15 3.7e+3

SpMV incorrect
Ortho subspace

Q][] += 1.0 N/C N/A

7.7e-02 5.9e+5

Non-ortho

S

ubspace

Soft Error Resilience

A2

Small PDE Problem: ILUT/GMRES
Correct result:35 Iters, 343M FLOPS
2 examples of a single bad op.

Solvers:

— 50-90% of total app operations.
— Soft errors most likely in solver.

Need new algorithms for soft errors:
— Well-conditioned wrt errors.
— Decay proportional to number of errors.
— Minimal impact when no errors.

New Programming Model Elements:
SW-enabled, highly reliable:

e Data storage, paths.

* Compute regions.
Idea: New algorithms with minimal
usage of high reliability.
First new algorithm: Flexible-
operator (FO)-GMRES.

* Resilient to soft errors.

* Only orthogonalization vectors
and computations highly
reliable.

e Vast majority of data, ops done
with base reliability:

e Operator, preconditioner
data

 SpMV, Preconditioner
application

Staffing: M. Heroux, M. Hoemmen

43

Delivering The Software

Maijor Libraries

PLASMA, MAGMA:

Next Generation of BLAS /LAPACK.
OpenMPl, MPICH

Support for shared memory allocation.
Trilinos

Vertical software stack.

Integrates other capabilities (e.g., PLASMA).

Framework for application development.

“Are C++ templates safe? No, but they are good.”

Compile-time Polymorphism
Templates and Sanity upon a shifting foundation

Software delivery: Template Benefits:
* Essential Element of EASI — Compile time polymorphism.
— True generic programming.
How can we: — No runtime performance hit.
* Implement mixed precision algorithms? — Strong typing for mixed precision.
* Implement generic fine-grain parallelism? — Support for extended precision.
* Support hybrid CPU/GPU computations? — Many more...
* Support extended precision?

* Explore redundant computations?
* Prepare for both exascale “swim lanes”?

C++ templates only sane way:

* Moving to completely templated Trilinos
libraries.

* Other important benefits.

* A usable stack exists now in Trilinos.

C++ Templates and Multi-precision

// Standard method prototype for apply matrix-vector multiply:
template<typename ST, typename OT>
CrsMatrix::apply(Vector<ST, OT> const& x, Vector<ST, OT>& y)

// Mixed precision method prototype (DP vectors, SP matrix):

template<typename ST, typename OT>

CrsMatrix::apply(Vector<ScalarTraits<ST>::dp(), OT> const& x,
Vector<ScalarTraits<ST>::dp(), OT> & y)

// Sample usage:

Tpetra::Vector<double, int> x, y;

Tpetra::CrsMatrix<float, int> A;

A.apply(x, y); // Single precision matrix applied to double precision vectors

Tpetra Linear Algebra Library

= Tpetra 1s a templated version of the Petra distributed
linear algebra model in Trilinos.
¢ Objects are templated on the underlying data types:

MultiVector<scalar=double, local ordinal=int,
global ordinal=local ordinal> ..

CrsMatrix<scalar=double, local ordinal=int,
global ordinal=local ordinal> ..

¢ Examples:

MultiVector<double, int, long int> V;

CrsMatrix<float> A;

float double speedup

Speedup of float over double
in Belos linear solver. 18 s 26 s 1.42x

double- quad-

double double : ..
- Arbitrary precision solves
Solve time (s) 2.6 53 29.9 76.5 using Tpetra and Belos

Accuracy 10-6 1012 10-24 10-48 linear solver package

Scalar float double

48

Kokkos Node API

» Kokkos provides two main components:
— Kokkos memory model addresses Difficulty #1
« Allocation, deallocation and efficient access of memory
« compute buffer: special memory used for parallel computation
* New: Local Store Pointer and Buffer with size.
— Kokkos compute model addresses Difficulty #2

 Description of kernels for parallel execution on a node
* Provides stubs for common parallel work constructs
« Currently, parallel for loop and parallel reduce

* Code is developed around a polymorphic Node obiject.

« Supporting a new platform requires only the
implementation of a new node type.

Kokkos Memory Model

* A generic node model must at least:
— support the scenario involving distinct device memory
— allow efficient memory access under traditional scenarios

* Nodes provide the following memory routines:

ArrayRCP<T> Node:

void Node:

void Node:

ArrayRCP<T> Node:

void Node:

:allocBuffer<T>(size t sz);

:copyToBuffer<T>(T * src,

ArrayRCP<T> dest);

:copyFromBuffer<T> (ArrayRCP<T> src,

T * dest);

:viewBuffer<T> (ArrayRCP<T> buff);
:readyBuffer<T> (ArrayRCP<T> buff);

Kokkos Compute Model

* How to make shared-memory programming generic:
— Parallel reduction is the intersection of aot () and norm1 ()
— Parallel for loop is the intersection of axpy () and mat-vec
— We need a way of fusing kernels with these basic constructs.

* Template meta-programming is the answer.
— This is the same approach that Intel TBB and Thrust take.
— Has the effect of requiring that Tpetra objects be templated on Node type.

» Node provides generic parallel constructs, user fills in the rest:

template <class WDP> template <class WDP>

void Node::parallel for(WDP: :ReductionType Node::parallel reduce(
int beg, int end, WDP workdata); int beg, int end, WDP workdata);

Work-data pair (WDP) struct provides: Work-data pair (WDP) struct provides:

* loop body via Wwpp: :execute (i) * reduction type WDP: : ReductionType

* element generation via WDP: : generate (i)
* reduction via WDP: : reduce (x, y)

50

Example Kernels: axpy () and dot ()

template <class WDP> template <class WDP>
void WDP: :ReductionType
Node::parallel for(int beg, int end, Node: :parallel reduce(int beg, int end,
WDP workdata) WDP workdata)
template <class T> template <class T>
struct AxpyOp { struct DotOp {
const T * x; typedef T ReductionType;
T *vy; const T * x, * vy;
T alpha, beta; T identity() { return (T)0; }
void execute(int i) T generate(int i) { return x[i]*y[i]; }
{ y[i] = alpha*x[i] + beta*y[i]; } T reduce(T x, T y) { return x + y; }
}s }s
AxpyOp<double> op; DotOp<float> op;
op.X = ...; op.alpha = ...; Op.X = ...; OpP.Y = ...}
op.y = ...; op.beta = ...; float dot;
node.parallel for< AxpyOp<double> > dot = node.parallel_reduce< DotOp<float> >

(0, length, op); (0, length, op);

52

Hybrid Timings (Tpetra)

Tests of a simple iterations:

» power method: one sparse mat-vec, two vector operations

 conjugate gradient: one sparse mat-vec, five vector operations

DNVS/x104 from UF Sparse Matrix
Collection (100K rows, 9M entries)

NCCS/ORNL Lens node includes:
* one NVIDIA Tesla C1060
* one NVIDIA 8800 GTX
 Four AMD quad-core CPUs
Results are very tentative!
* suboptimal GPU traffic
* bad format/kernel for GPU

* bad data placement for threads

Single thread
8800 GPU
Tesla GPU
Tesla + 8800

16 threads

1 node
15 threads + Tesla

2 nodes
15 threads + Tesla

140
1,172
1,475
981
816

867

1,677

614
1,222
1,531
1,025
1,376

1,731

2,102

Summary

IAA Algs & EASI: Focused on explicit co-design
Architecture-runtime-aware algorithms
Algorithm-architecture-aware runtime

Lots of exploratory projects:

Multi-precision, CA, FT, Parallel Time
Multicore, GPGPU, manycore

With concrete delivery in libraries:

PLASMA, MAGMA, OpenMPI, MPICH, Trilinos

